BÀI TẬP ÔN HỌC KỲ 1 (09-10) TOÁN HÌNH HỌC 9
Bài 1 Cho nửa đường tròn đường kính AB = 2R . Gọi Ax và By là các tia vuông góc với AB ( Ax , By và nửa đường tròn cùng một nửa mặt phẳng bờ AB ) . Gọi M là một điểm bất kỳ thuộc Ax . Qua M Kẻ tiếp tuyến với nửa đường tròn , cắt By tại N . a/ Tính số đo góc MON .
b/ Chứng minh rằng : MN=AM + BN
c/ Chứng minh rằng : AM . BN =R2
BÀI TẬP ÔN HỌC KỲ 1 (09-10) TOÁN HÌNH HỌC 9 Bài 1 Cho nửa đường tròn đường kính AB = 2R . Gọi Ax và By là các tia vuông góc với AB ( Ax , By và nửa đường tròn cùng một nửa mặt phẳng bờ AB ) . Gọi M là một điểm bất kỳ thuộc Ax . Qua M Kẻ tiếp tuyến với nửa đường tròn , cắt By tại N . a/ Tính số đo góc MON . b/ Chứng minh rằng : MN=AM + BN c/ Chứng minh rằng : AM . BN =R2 Giải: Vẽ hình đúng Gọi I là tiếp tuyến của MN với nửa đường tròn a) Theo tính chất hai tiếp tuyến cắt nhau ta có MA = MI ( = ) NI = NB ( = ) Mà AI và BI kề bù Do đó MI + IN = 900 hay MN = 900 b) Theo tính chất hai tiếp tuyến cắt nhau ta có AM=MI và MI = BN Mà MI+IN = MN Nên MN=AM+BN c) Trong tam giác vuông OMN Ta có OI2= MI . IN (hệ thức h2= b’. c’) Mà AM=MI và MI = BN Suy ra R2= AM.BN Bài 2 : Cho ΔABC vuông tại A có AB = 6 cm , AC = 8 cm .Kẻ đường cao AH . a)Tính BC , AH , HB , HC . b)Tính giá trị của biểu thức Q = sinB + cosB . Giải: a)Vẽ hình đúng *Áp dụng định lý Pitago trong tam giác vuông ABC Ta có :BC2= AB2+AC2 =102 BC = 10 (cm) *AH == = 4,8 (cm) *HB = = = 3,6 (cm) *HC = 10 -3,6 = 6,4 (cm) b)Q = sinB + cosB . = + = = Bài 3 Cho tam giác ABC vuông tại A . Trên nửa mặt phẳng chứa điểm A bờ BC vẽ tia Bx vuông góc với BC . Gọi M là trung điểm của đoạn BC . Qua M kẻ đường thẳng vuông góc với AB , cắt Bx tại O . 1)Chứng minh rằng BC là tiếp tuyến của đường tròn (O;OA). 2) Chứng minh rằng bốn điểm O,A,M,B cùng nằm trên một đường tròn Giải: Vẽ hình đúng 1)Chứng minh rằng BC là tiếp tuyến của đường tròn (O;OA). Gọi I là giao điểm của MO vá AB Theo đề bài MI là đường trung bình của tam giác ABC nên IA=IB Do đó tam giác OAB cân tại O (MI vừa là đường cao vừa là trung tuyến) Suy ra : OA =OB Mà OB vuông góc với BC Vì vậy BC là tiếp tuyến của đường tròn (O;OA). 2)Chứng minh rằng bốn điểm O,A,M,B cùng nằm trên một đường tròn Tam giác BOM vuông tại B nên ba điểm B,O,M cùng nằm trên đường tròn có tâm là trung điểm cạnh huyền MO Xét hai tam giác BOM và AOM có OA=OB =(do tính chất hai tiếp tuyến cắt nhau) MO là cạnh chung ) Vì vậy ΔBOM=ΔAOM (c,g,c) Do đó Tam giác AOM vuông tại A nên ba điểm A,O,M cùng nằm trên đường tròn có tâm là trung điểm cạnh huyền MO Vậy bốn điểm O,A,M,B cùng nằm trên một đường tròn Bài 4 : Một cái thang dài 4 m , đặt dựa vào tường , góc giữa thang và mặt đất là 600 . Hãy vẽ hình minh họa và tính khoảng cách từ chân thang đến tường . Giải: Vẽ hình đúng Khoảng cách chân thang đến tường là : 4. cos 600 = 4 . = 2 (m) Bài 5: Cho nửa đường tròn (O), đường kính AB =2R .Kẻ các tiếp tuyến Ax ; By cùng phía với nửa đường tròn đối với AB . Vẽ bán kính OE bất kỳ . Tiếp tuyến của nửa đường tròn tại E cắt Ax , By theo thứ tự tại C và D . Chứng minh rằng : a/CD=AC+BD B/ =900 C/ Tích AC.BD = R2 Giải: Vẽ hình Chứng minh a/ CD=AC+BD Theo tính chất hai tiếp tuyến cắt nhau Thì AC= EC và BD=ED mà DC = EC+ED Nên CD = AC+BD b/ =900 Theo tính chất hai tiếp tuyến cắt nhau ta có CA = CE ( = ) ED = BD ( = ) Mà AE và EB kề bù Do đó CE + EB = 900 hay CD = 900 c/ Tích AC.BD = R2 Trong tam giác vuông OCD Ta có OE2= EC . ED (hệ thức h2= b’. c’) mà AC= EC và BD=ED Suy ra R2= AC.BD Bài 6: Cho tam giác ABC vuông tại A , có BC= 5 Cm , AB =2AC a/Tính AB b/Kẻ đường cao AH .Tính HB , AH c/Tính tg, Suy ra giá trị gần đúng của số đo d/Vẽ hai đường tròn (B;BA) và (C;CA) . Gọi E là giao điểm thứ hai của hai đường tròn . Chứng minh CE là tiếp tuyến của đường tròn (B). Giải: Vẽ hình a)Tính AB Áp dụng định lý Pitago trong tam giác vuông , ta có AB2+= BC2 AB2+= BC2 + = BC2 = BC2 5AB2 = 4BC2 AB2 = == 20 AB= = 2. (cm) b)Kẻ đường cao AH .Tính HB , AH Ta có AC= = = (cm) AH.BC=AB.AC (hệ thức h.a=b.c ) AH= = = 2 (cm) AB2= BC.HB ( Hệ thức c2=a.c’) Suy ra HB= = = 4 (cm) c)Tính tg, Suy ra giá trị gần đúng của số đo Ta có tg= = = 2 Suy ra ≈ c) Xét hai tam giác ABC và EBC có BA=BE (là bán kính đường tròn (B;BA) ) CA =CE (là bán kính đường tròn (C;CA) ) BC là cạnh chung Suy ra ΔABC=ΔEBC (c,c,c) Mà =900 nên = 900 Hay CE vuông góc với bán kính BE tại tiếp điểm E Vậy : CE là tiếp tuyến của đường tròn (B;BA).
Tài liệu đính kèm: