Đề cương ôn tập môn Toán Lớp 9 thi vào Lớp 10 không chuyên (Có đáp án)

Đề cương ôn tập môn Toán Lớp 9 thi vào Lớp 10 không chuyên (Có đáp án)

Bài 1 Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.

1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.

2. Chứng minh AB // EM.

3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K.

Chứng minh M là trung điểm HK.

 

doc 18 trang Người đăng Đăng Hải Ngày đăng 25/05/2024 Lượt xem 209Lượt tải 0 Download
Bạn đang xem tài liệu "Đề cương ôn tập môn Toán Lớp 9 thi vào Lớp 10 không chuyên (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
CÁC BÀI TOÁN HÌNH ÔN THI VÀO LỚP 10 
(Dành tặng cho các em học sinh lớp 9 đang chuẩn bị ôn thi vào lớp 10 không chuyên)
Bài 1 Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. 
Chứng minh M là trung điểm HK.
4. Chứng minh 
BÀI GIẢI CHI TIẾT (hình 01)
1. Chứng minh tứ giác AEDM nội tiếp.
Ta có : sđ (góc tạo bởi tia tiếp tuyến AE
và dây AC của đường tròn (O))
Tương tự: sđ (Dx là tia đối của tia tiếp tuyến DE)
Mà AC = BD (do ABCD là hình thang cân) nên . Do đó .
Vậy tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
Tứ giác AEDM nội tiếp nên (cùng chắn cung ED). Mà (góc tạo bởi tia tiếp tuyến và dây cung với góc nội tiếp cùng chắn cung AD).
Suy ra: . Do đó EM // AB.
3. Chứng minh M là trung điểm HK.
có HM // AB . có MK // AB . Mà (định lí Ta let cho hình thang ABCD). Nên . Do đó MH = MK. Vậy M là trung điểm HK.
4. Chứng minh .
Áp dụng hệ quả định lí Ta let cho tam giác ADB có HM // AB ta được: 
 (1). Áp dụng hệ quả định lí Ta let cho tam giác BCD có KM // CD ta được: (2). Cộng (1) và (2) vế theo vế ta được: . Suy ra: , mà MH = MK nên 2HM = 2KM = HK. 	Do đó: . Suy ra: (đpcm). 
Lời bàn: 
1. Do AC = BD nên để chứng minh tứ giác AEDM nội tiếp ta sử dụng phương pháp: Nếu tứ giác có góc ngoài tại một đỉnh bằng góc đối của đỉnh của đỉnh đó thì tứ giác đó nội tiếp. Với cách suy nghĩ trên chỉ cần vẽ tia Dx là tia đối của tia tiếp tuyến DE thì bài toán giải quyết được dễ dàng. Có thể chứng minh tứ giác AEDM nội tiếp bằng cách chứng minh khác được không? (phần này dành cho các em suy nghĩ nhé)
2. Câu 3 có còn cách chứng minh nào khác không? Có đấy. Thử chứng minh tam giác AHM và tam giác BKM bằng nhau từ đó suy ra đpcm.
3. Câu 4 là bài toán quen thuộc ở lớp 8 phải không các em? Do đó khi học toán các em cần chú ý các bài tập quen thuộc nhé. Tuy vậy câu này vẫn còn một cách giải nữa đó. Em thử nghĩ xem?
Bài 2 Cho nửa đường tròn (O) đường kính AB= 2R, dây cung AC. Gọi M là điểm chính giữa cung AC. Đường thẳng kẻ từ C song song với BM cắt tia AM ở K và cắt tia OM ở D. OD cắt AC tại H.
1. Chứng minh tứ giác CKMH nội tiếp.
2. Chứng minh CD = MB và DM = CB.
3. Xác định vị trí điểm C trên nửa đường tròn (O) để AD là tiếp tuyến của nửa đường tròn.
4. Trong trường hợp AD là tiếp tuyến cửa nửa đường tròn (O), tính diện tích phần tam giác ADC ở ngoài đường tròn (O) theo R.
BÀI GIẢI CHI TIẾT
1. Chứng minh tứ giác CKMH nội tiếp.
(góc nội tiếp chắn nửa đường tròn đường kính AB) . Mà CD // BM (gt) nên AM CD . Vậy .
(gt) .
Tứ giác CKMH có nên nội tiếp được 
trong một đường tròn.
2. Chứng minh CD = MB và DM = CB.
Ta có: (góc nội tiếp chắn nửa đường tròn) Hình 2
Do đó: DM // CB, mà CD // MB(gt) nên tứ giác CDMB là hình bình hành. Suy ra: CD = MB và DM = CB. 
3. Xác định vị trí điểm C trên nửa đường tròn (O) để AD là tiếp tuyến của nửa đường tròn.
AD là tiếp tuyến của đường tròn (O) . có AK CD và DH AC nên M là trực tâm tam giác . Suy ra: CM AD. 
Vậy CM // AB .
Mà nên = 600.
4. Tính diện tích phần tam giác ADC ở ngoài (O) theo R:
Gọi S là diện tích phần tam giác ADC ở ngoài 
đường tròn (O). S1 là diện tích tứ giác AOCD. 
S2 là diện tích hình quạt góc ở tâm AOC. 
Ta có: S = S1 – S2 hình 3
 Tính S1: 
AD là tiếp tuyến của đường tròn (O) .
Do đó: AD = AO. tg 600 = SADO = .
(c.g.c) SAOD = SCOD SAOCD = 2 SADO = 2. = .
 Tính S2: S quạt AOC = = .
 Tính S: S = S1 – S2 = – = = (đvdt) .
Lời bàn: 
1. Rõ ràng câu 1, hình vẽ gợi ý cho ta cách chứng minh các góc H và K là những góc vuông, và để có được góc K vuông ta chỉ cần chỉ ra MB AM và CD// MB. Điều đó suy ra từ hệ quả của góc nội tiếp và giả thiết CD // MB. Góc H vuông 
được suy từ kết quả của bài số 14 trang 72 SGK toán 9 tập 2. Các em lưu ý các bài tập này được vận dụng vào việc giải các bài tập khác nhé.
2. Không cần phải bàn, kết luận gợi liền cách chứng minh phải không các em?
3. Rõ ràng đây là câu hỏi khó đối với một số em, kể cả khi hiểu rồi vẫn không biết giải như thế nào , có nhiều em may mắn hơn vẽ ngẫu nhiên lại rơi đúng vào hình 3 ở trên từ đó nghĩ ngay được vị trí điểm C trên nửa đường tròn. Khi gặp loại toán này đòi hỏi phải tư duy cao hơn. Thông thường nghĩ nếu có kết quả của bài toán thì sẽ xảy ra điều gì ? Kết hợp với các giả thiết và các kết quả từ các câu trên ta tìm được lời giải của bài toán . Với bài tập trên phát hiện M là trực tâm của tam giác không phải là khó, tuy nhiên cần kết hợp với bài tập 13 trang 72 sách Toán 9T2 và giả thiết M là điểm chính giữa cung AC ta tìm được vị trí của C ngay.
Với cách trình bày dưới mệnh đề “khi và chỉ khi” kết hợp với suy luận cho ta lời giải chặt chẽ hơn. Em vẫn có thể viết lời giải cách khác bằng cách đưa ra nhận định trước rồi chứng minh với nhận định đó thì có kết quả , tuy nhiên phải trình bày phần đảo: Điểm C nằm trên nửa đường tròn mà thì AD là tiếp tuyến. Chứng minh nhận định đó xong ta lại trình bày phần đảo: AD là tiếp tuyến thì . Từ đó kết luận.
4. Phát hiện diện tích phần tam giác ADC ở ngoài đường tròn (O) chính là hiệu của diện tích tứ giác AOCD và diện tích hình quạt AOC thì bài toán dễ tính hơn so với cách tính tam giác ADC trừ cho diện tích viên phân cung AC.
Bài 3 Cho nửa đường tròn (O) đường kính AB = a. Gọi Ax, By là các tia vuông góc với AB ( Ax, By thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (O) (M khác A và B) kẻ tiếp tuyến với nửa đường tròn (O); nó cắt Ax, By lần lượt ở E và F.
1. Chứng minh: 
2. Chứng minh tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng.
3. Gọi K là giao điểm của AF và BE, chứng minh . 
4. Khi MB = .MA, tính diện tích tam giác KAB theo a. 
BÀI GIẢI CHI TIẾT 
1. Chứng minh: .
	EA, EM là hai tiếp tuyến của đường tròn (O)
cắt nhau ở E nên OE là phân giác của .
Tương tự: OF là phân giác của .
Mà và kề bù nên: (đpcm) hình 4
2. Chứng minh: Tứ giác AEMO nội tiếp; hai tam giác MAB và OEF đồng dạng.
Ta có: (tính chất tiếp tuyến)
Tứ giác AEMO có nên nội tiếp được trong một đường tròn.
 Tam giác AMB và tam giác EOF có:, (cùng chắn cung MO của đường tròn ngoại tiếp tứ giác AEMO. Vậy Tam giác AMB và tam giác EOF đồng dạng (g.g).
3. Gọi K là giao điểm của AF và BE, chứng minh .
Tam giác AEK có AE // FB nên: . Mà : AE = ME và BF = MF (t/chất hai tiếp tuyến cắt nhau). Nên . Do đó MK // AE (định lí đảo của định lí Ta- let). Lại có: AE AB (gt) nên MK AB.
4. Khi MB = .MA, tính diện tích tam giác KAB theo a. 
Gọi N là giao điểm của MK và AB, suy ra MN AB. 
FEA có MK//AE nên (1). BEA có NK//AE nên (2).
Mà (do BF // AE) nên hay (3).
Từ (1), (2) và (3) suy ra . Vậy MK = NK.
Tam giác AKB và tam giác AMB có chung đáy AB nên: .
Do đó. 
Tam giác AMB vuông ở M nên tg A = . 
Vậy AM = và MB = = (đvdt).
Lời bàn: 
(Đây là đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của tỉnh Hà Nam) . 
Từ câu 1 đến câu 3 trong quá trình ôn thi vào lớp 10 chắc chắn thầy cô nào cũng ôn tập, do đó những em nào ôn thi nghiêm túc chắc chắn giải được ngay, khỏi phải bàn, những em thi năm qua ở tỉnh Hà Nam xem như trúng tủ. Bài toán này có nhiều câu khó, và đây là một câu khó mà người ra đề khai thác từ câu: MK cắt AB ở N. Chứng minh: K là trung điểm MN. 
Nếu chú ý MK là đường thẳng chứa đường cao của tam giác AMB do câu 3 và tam giác AKB và AMB có chung đáy AB thì các em sẽ nghĩ ngay đến định lí: Nếu hai tam giác có chung đáy thì tỉ số diện tích hai tam giác bằng tỉ số hai đường cao tương ứng, bài toán qui về tính diện tích tam giác AMB không phải là khó phải không các em?
Bài 4 Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC (C là tiếp điểm). Hạ CH vuông góc với AB, đường thẳng MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Gọi giao điểm của MO và AC là I. Chứng minh rằng:
a) Tứ giác AMQI nội tiếp. b) . c) CN = NH.
(Trích đề thi tuyển sinh vào lớp 10 năm học 2009-2010 của sở GD&ĐT Tỉnh Bắc Ninh)
BÀI GIẢI CHI TIẾT
a) Chứng minh tứ giác AMQI nội tiếp:
Ta có: MA = MC (tính chất hai tếp tuyến cắt nhau)
OA = OC (bán kính đường tròn (O))
Do đó: MO AC .
(góc nội tiếp chắn nửa đường tròn (O))
. Hai đỉnh I và Q cùng nhìn AM dưới Hình 5
một góc vuông nên tứ giác AMQI nội tiếp được
trong một đường tròn. 
b) Chứng minh:.
Tứ giác AMQI nội tiếp nên Hình 6 
(cùng phụ ) (2). 
có OA = OC nên cân ở O. (3). Từ (1), (2) và (3) suy ra .
c) Chứng minh CN = NH.
Gọi K là giao điểm của BC và tia Ax. Ta có: (góc nội tiếp chắn nửa đường tròn(O)). AC BK , AC OM OM // BK. Tam giác ABK có: OA = OB, OM // BK MA = MK. 
Áp dụng hệ quả định lí Ta let cho có NH // AM (cùng AB) ta được: 
	(4). Áp dụng hệ quả định lí Ta let cho có CN // KM (cùng AB) ta được: (5). Từ (4) và (5) suy ra: . Mà KM = AM nên CN = NH (đpcm).
Lời bàn 
1. Câu 1 hình vẽ gợi cho ta suy nghĩ: Cần chứng minh hai đỉnh Q và I cùng nhìn AM dưới một góc vuông. Góc AQM vuông có ngay do kề bù với ACB vuông, góc MIA vuông được suy từ tính chất hai tiếp tuyến cắt nhau.
2. Câu 2 được suy từ câu 1, dễ dàng thấy ngay , , vấn đề lại là cần chỉ ra , điều này không khó phải không các em?
3. Do CH // MA , mà đề toán yêu cầu chứng minh CN = NH ta nghĩ ngay việc 
kéo dài BC cắt Ax tại K bài toán trở về bài toán quen thuộc: Cho tam giác ABC, M là trung điểm BC. Kẻ đường thẳng d // BC cắt AB, AC và AM lần lượt tại E, D và I. Chứng minh IE = ID. Nhớ được các bài toán có liên quan đến một phần của bài thi ta qui về bài toán đó thì giải quyết đề thi một cách dễ dàng.
Bài 5 Cho đường tròn tâm O đường kính AB có bán kính R, tiếp tuyến Ax. Trên tiếp tuyến Ax lấy điểm F sao cho BF cắt đường tròn tại C, tia phân giác của góc ABF cắt Ax tại E và cắt đường tròn tại D.
a) Chứng minh OD // BC.
b) Chứng minh hệ thức: BD.BE = BC.BF
c) Chứng minh tứ giác CDEF nội tiếp.
d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi. Tính diện tích hình thoi AOCD theo R.
BÀI GIẢI CHI TIẾT
a) Chứng minh OD // BC. Hình 7
cân ở O (vì OD = OB = R) 
Mà (gt) nên . Do đó: OD // BC.
b) Chứng minh hệ thức: BD.BE = BC.BF.
(góc nội tiếp chắn nửa đường tròn (O) .
(góc nội tiếp chắn nửa đường tròn (O) .
 vuông ở A (do Ax là tiếp tuyến ), có AD BE nên:
AB2 = BD.BE (1).
 vuông ở A (do Ax là tiếp tuyến), có AC BF nên AB2 = BC.BF (2).
Từ (1) và (2) suy ra: BD.BE = BC.BF.
c) Chứng minh tứ giác CDEF nội tiếp:
Ta có: 
	 (hai góc nội tiếp cùng chắn cung BC)
 ( cùng phụ )	 
Do đó tứ giác CDEF nội tiếp.
Cách khác
và có: chung và (suy từ BD.BE = BC.BF) nên chúng đồng dạng (c.g.c). Suy ra: . Vậy tứ giác CDEF là tứ giác nội tiếp.
d) Xác định số đo của góc ABC để tứ giác AOCD là hình thoi:
Ta có: (do BD là ph ... ở P. Chứng minh: 
a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó. 
b) KN là tiếp tuyến của đường tròn (O; R).
c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.
BÀI GIẢI
a) Chứng minh tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó:
Ta có (góc nội tiếp chắn nửa đường tròn (O)).
Do đó: 
Tứ giác ICPN có nên nội tiếp được
trong một đường tròn. Tâm K của đường tròn ngoại tiếp
tứ giác ICPN là trung điểm của đoạn thẳng IP.
b) Chứng minh KN là tiếp tuyến của đường tròn (O).
Tam giác INP vuông tại N, K là trung điểm IP nên
. Vậy tam giác IKN cân ở K . Do đó (1).
Mặt khác (hai góc nội tiếp cùng chắn cung PN đường tròn (K)) (2)
N là trung điểm cung CB nên . Vậy NCB cân tại N. 
Do đó : (3). Từ (1), (2) và (3) suy ra , hai góc này ở vị trí đồng vị nên KN // BC.
Mặt khác ON BC nên KN ON. Vậy KN là tiếp tuyến của đường tròn (O).
Chú ý: * Có thể chứng minh 
 * hoặc chứng minh .
c) Chứng minh rằng khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định:	 
Ta có (gt) nên . Vậy OM là phân giác của . 
Tương tự ON là phân giác của , mà và kề bù nên .
Vậy tam giác MON vuông cân ở O.
Kẻ OH MN, ta có OH = OM.sinM = R. = không đổi.
Vậy khi C di động trên đường tròn (O) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định (O; ).
Bài 12 Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC tới đường tròn ( B, C là các tiếp điểm). Đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E , dây DE không qua tâm O). Gọi H là trung điểm của DE, AE cắt BC tại K . 
a) Chứng minh tứ giác ABOC nội tiếp đường tròn . 
b) Chứng minh HA là tia phân giác của 
c) Chứng minh : . 
BÀI GIẢI
a) Chứng minh tứ giác ABOC nội tiếp: 
(tính chất tiếp tuyến)
Tứ giác ABOC có nên nội tiếp được trong một đường tròn. 
b) Chứng minh HA là tia phân giác của góc BHC:
AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra . Do đó . Vậy HA là tia phân giác của góc BHC.
c) Chứng minh :
ABD và AEB có: 
 chung, (cùng bằng sđ )
Suy ra : ABD ~ AEB
Do đó: (1)
ABK và AHB có: 
 chung, (do ) nên chúng đồng dạng.
Suy ra: (2)
Từ (1) và (2) suy ra: AE.AD = AK. AH 
 ===
= (do AD + DE = AE và DE = 2DH). 
Vậy: (đpcm).
Bài 13 Cho đường tròn (O;R) có đường kính AB. Trên đường tròn (O;R) lấy điểm M sao cho . Vẽ đường tròn (B; BM) cắt đường tròn (O; R) tại điểm thứ hai là N.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM). 
b) Kẻ các đường kính MOI của đường tròn (O; R) và MBJ của đường tròn (B; BM). Chứng minh N, I và J thẳng hàng và JI . JN = 6R2
c) Tính phần diện tích của hình tròn (B; BM) nằm bên ngoài đường tròn (O; R) theo R.
BÀI GIẢI
a) Chứng minh AM và AN là các tiếp tuyến của 
đường tròn (B; BM). Ta có .
(góc nội tiếp chắn nửa đường tròn(O)).
Điểm M và N thuộc (B;BM); AM MB
và AN NB. Nên AM; AN là các tiếp tuyến của (B; BM).
b) Chứng minh N; I; J thẳng hàng và JI .JN = 6R2.
(các góc nội tiếp chắn nửa đường tròn tâm O và tâm B). Nên IN MN và JN MN . Vậy ba điểm N; I và J thẳng hàng.
Tam giác MJI có BO là đường trung bình nên IJ = 2BO = 2R. Tam giác AMO cân ở O (vì OM = OA), nên tam giác MAO đều.
AB MN tại H (tính chất dây chung của hai đường tròn (O) và (B) cắt nhau).
Nên OH = . Vậy HB = HO + OB = .
Vậy JI . JN = 2R . 3R = 6R2
c) Tính diện tích phần hình tròn (B; BM) nằm ngoài đường tròn (O; R) theo R:
Gọi S là diện tích phần hình tròn nằm (B; BM) nằm bên ngoài hình tròn (O; R). S1 là diện tích hình tròn tâm (B; BM). S2 là diện tích hình quạt MBN. S3 ; S4 là diện tích hai viên phân cung MB và NB của đường tròn (O; R).
Ta có : S = S1 – (S2 + S3 + S4).
Tính S1: . Vậy: S1 = .
Tính S2: S2 = = 
Tính S3: S3 = Squạt MOB – SMOB. Squạt MOB = .
OA = OB SMOB = SAMB = = = 
Vậy S3 = = S4 (do tính chất đối xứng). Từ đó S = S1 - (S2 + 2S3)
= – = (đvdt).
Bài 14 Cho đường tròn (O; R) , đường kính AB . Trên tiếp tuyến kẻ từ A của đường tròn này lấy điểm C sao cho AC = AB . Từ C kẻ tiếp tuyến thứ hai CD của đường tròn (O; R), với D là tiếp điểm. 
a) Chứng minh rằng ACDO là một tứ giác nội tiếp.
b) Gọi H là giao điểm của AD và OC. Tính theo R độ dài các đoạn thẳng AH; AD.
c) Đường thẳng BC cắt đường tròn (O; R) tại điểm thứ hai M. Chứng minh .
d) Đường tròn (I) ngoại tiếp tam giác MHB. Tính diện tích phần của hình tròn này nằm ngoài đường tròn (O; R).
BÀI GIẢI
a) Chứng minh tứ giác ACDO nội tiếp:
(tính chất tiếp tuyến).
Tứ giác ACDO có nên
nội tiếp được trong một đường tròn.
b) Tính theo R độ dài các đoạn thẳng AH; AD:
CA = CD (tính chất hai tiếp tuyến cắt nhau); 
OA = OD =R và AH = HD
Tam giác ACO vuông ở A, AH OC
nên = =. Vậy AH = và AD = 2AH = .
c) Chứng minh :
 (góc nội tiếp chắn nửa đường tròn) . Hai đỉnh H và M cùng nhìn AC dưới góc 900 nên ACMH là tứ giác nội tiếp. Suy ra: .
Tam giác ACB vuông tại A, AC = AB(gt) nên vuông cân. Vậy .
Do đó : .
d) Tính diện tích hình tròn (I) nằm ngoài đường tròn (O) theo R:
Từ và mà (do CAB vuông cân ở B).
Nên Tứ giác HMBO nội tiếp . Do đó . Vậy tâm I đường tròn ngoại tiếp tam giác MHB là trung điểm MB. Gọi S là diện tích phần hình tròn (I) ở ngoài đường tròn (O).
S1 là diện tích nửa hình tròn đường kính MB. S2 là diện tích viên phân MDB.
Ta có S = S1 – S2 . Tính S1: 
. Vậy S1 = .
Tính S2: S2 = SquạtMOB – SMOB = = .
 S = ( ) = .
Bài 15 Cho đường tròn (O) đường kính AB bằng 6cm . Gọi H làđiểm nằm giữa A và B sao cho AH = 1cm. Qua H vẽ đường thẳng vuông góc với AB , đường thẳng này cắt đường tròn (O) tại C và D. Hai đường thẳng BC và DA cắt nhau tại M. Từ M hạ đường vuông góc MN với đường thẳng AB ( N thuộc thẳng AB).
a) Chứng minh MNAC là tứ giác nội tiếp.
b) Tính độ dài đoạn thẳng CH và tính tg.
c) Chứng minh NC là tiếp tuyến của đường tròn (O).
d) Tiếp tuyến tại A của đường tròn (O) cắt NC ở E. Chứng minh đường thẳng EB đi qua trung điểm của đoạn thẳng CH.
BÀI GIẢI
a) Chứng minh tứ giác MNAC nội tiếp:
 (góc nội tiếp chắn nửa đường tròn)
Suy ra . Tứ giác MNAC có 
nên nội tiếp được trong một đường tròn.
b) Tính CH và tg ABC.
AB = 6 (cm) ; AH = 1 (cm) HB = 5 (cm).
Tam giác ACB vuông ở C, CH AB 
CH2 = AH . BH = 1 . 5 = 5 (cm). Do đó tg ABC = .
c) Chứng minh NC là tiếp tuyến của đường tròn (O):
Ta có (hai góc nội tiếp cùng chắn cung AN của đường tròn ngoại tiếp tứ giác MNAC). (so le trong của MN // CD) và (cùng chắn ) Nên . Do sđ sđ . Suy ra CN là tiếp tuyến của đường tròn (O). (xem lại bài tập 30 trang 79 SGK toán 9 tập 2).
d) Chứng minh EB đi qua trung điểm của CH:
Gọi K là giao điểm của AE và BC; I là giao điểm của CH và EB. KE//CD (cùngvới AB) (đồng vị). (cùng chắn cung BD). (đối đỉnh) và (cùng chắn ). 
Suy ra: cân ở E. Do đó EK = EC. Mà EC = EA (tính chất hai tiếp tuyến cắt nhau) nên EK = EA.
 có CI // KE và có IH // AE .
Vậy mà KE = AE nên IC = IH (đpcm).
Bài 16 	Cho đường tròn tâm O, đường kính AC. Vẽ dây BD vuông góc với AC tại K (K nằm giữa A và O). Lấy điểm E trên cung nhỏ CD (E không trùng C và D), AE cắt BD tại H.
Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp.
Chứng minh AD2 = AH. AE.
Cho BD = 24cm; BC = 20cm. Tính chu vi hình tròn (O).
Cho . Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác MBC cân tại M. Tính góc MBC theo để M thuộc đường tròn (O).
Hướng dẫn
c) Tính BK = 12 cm, CK = 16 cm, dùng hệ thức
lượng tính được CA = 25 cm R = 12,5 cm.
Từ đó tính được C = 25
d) M (O) ta cần có tứ giác ABMC nội tiếp.
Từ đó tính được .
Bài 17 Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax và dây AC bất kỳ. Tia phân giác của góc xAC cắt nửa đường tròn tại D, các tia AD và BC cắt nhau tại E. 
a) Chứng minh DABE cân. 
b) Đường thẳng BD cắt AC tại K, cắt tia Ax tại F . Chứng minh tứ giác ABEF nội tiếp. 	
c) Cho . Chứng minh AK = 2CK.
Bài 18 Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB; AC và cát tuyến AMN không đi qua tâm O. Gọi I là trung điểm MN. 
a) Chứng minh AB2 = AM. AN
b) Chứng minh tứ giác ABIO nội tiếp . 
c) Gọi D là giao điểm của BC và AI. Chứng minh 
Bài 19 Cho tam giác ABC nội tiếp đường tròn (O). Phân giác trong của cắt BC tại D và cắt đường tròn tại M. Phân giác ngoài tại Acắt đường thẳng BC tại E và cắt đường tròn tại N. Gọi K là trung điểm của DE. Chứng minh: 
a) MN vuông góc với BC tại trung điểm của BC. 
b) 
c) AK là tiếp tuyến của đường tròn (O).
Bài 20 Cho ba điểm A, B,C nằm trên đường thẳng xy theo thứ tự đó. Vẽ đường tròn (O) đi qua B và C. Từ A vẽ hai tiếp tuyến AM và AN . Gọi E và F lần lượt là trung điểm của BC và MN. 
	a) Chứng minh AM2 = AN2 = AB. AC
	b) Đường thẳng ME cắt đường tròn (O) tại I. Chứng minh IN // AB 
	c) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác OEF nằm trên một đường thẳng cố định khi đường tròn (O) thay đổi.
Bài 21 Cho đường tròn (O) đường kính AB = 2R . Điểm C nằm trên (O) mà AC > BC. Kẻ CD ^ AB ( D Î AB ) . Tiếp tuyến tại A của đường tròn 	(O) cắt BC tại E. Tiếp tuyến tại C của đường tròn (O) cắt AE tại M. OM cắt AC tại I . MB cắt CD tại K. 
a) Chứng minh M là trung điểm AE. 
b) Chứng minh IK // AB. 
c) Cho OM = AB. Tính diện tích tam giác MIK theo R. 
Bài 22 Trên cung nhỏ BC của đường tròn ngoại tiếp tam giác đều ABC lấy một điểm P tuỳ ý. Gọi là giao điểm của AP và BC.
a) Chứng minh BC2 = AP . AQ .
b) Trên AP lấy điểm M sao cho PM = PB . Chứng minh BP+PC= AP.
c) Chứng minh . 
Bài 23 Cho nửa đường tròn (O) đường kính AB = 2R và điểm C nằm ngoài nửa đường tròn. CA cắt nửa đường tròn ở M, CB cắt nửa đường tròn ở N. Gọi H là giao điểm của AN và BM.
a) Chứng minh CH ^ AB . 
b) Gọi I là trung điểm của CH. Chứng minh MI là tiếp tuyến của nửa đường tròn (O).
c) Giả sử CH =2R . Tính số đo cung .
Bài 24 Cho nửa đường tròn đường kính AB = 2R và dây MN có độ dài bằng bán kính (M thuộc cung AN). Các tia AM và BN cắt nhau ở I. Các dây AN và BM cắt nhau ở K.
a) Tính và .
b) Tìm quỹ tích điểm I và quỹ tích điểm K khi dây MN thay đổi vị trí .
c) Chứng minh I là trực tâm của tam giác KAB .
d) AB và IK cắt nhau tại H . Chứng minh HA.HB = HI.HK . 
e) Với vị trí nào của dây MN thì tam giác IAB có diện tích lớn nhất? Tính giá trị diện tích lớn nhất đó theo R. 
Bài 25 Trên đường tròn (O) lấy ba điểm A, B và C. Gọi M, N và P theo thứ tự là điểm chính giữa của các cung AB, BC và AC. BP cắt AN tại I, NM cắt AB tại E.
Gọi D là giao điểm của AN và BC. Chứng minh rằng: 
a) DBNI cân. b) AE.BN = EB.AN. c) EI // BC. d) . 
Bài 26 Cho hai đường tròn (O) và (O1) ở ngoài nhau. Đường nối tâm OO1 cắt các đường tròn (O) và (O1) tại các điểm A, B, C, D theo thứ tự trên đường thẳng. Kẻ tiếp tuyến tuyến chung ngoài EF (E Î (O), F Î (O1)). Gọi M là giao điểm của AE và DF, N là giao điểm của EB và FC. Chứng minh rằng: 
a) Tứ giác MENF là hình chữ nhật.
b) MN ^ AD.
c) ME . MA = MF . MD.
 --- HẾT---- 

Tài liệu đính kèm:

  • docde_cuong_on_tap_mon_toan_lop_9_thi_vao_lop_10_khong_chuyen_c.doc