Câu 1: (4 điểm)
1) Giải hệ phương trình
2) Giải phương trình :
Câu 2: ( 3 điểm)
Cho phương trình x2 – 2 ( 2m + 1) x + 4 m2 + 4 m – 3 = 0 ( x là ẩn số )
Tìm m để phương trình có hai nghiệm phân biệt thỏa
Câu 3: (2 điểm )
Thu gọn biểu thức: A=
Câu 4: ( 4 điểm )
Cho tam giác ABC cân tại A nội tiếp đường tròn (O).Gọi P là điểm chính giữa của
cung nhỏ AC.Hai đường thẳng AP và BC cắt nhau tại M.Chừng minh rằng :
a)
b)MA.MP =BA.BM
SỜ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỒ CHÍ MINH KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG CHUYÊN NĂM HỌC 2010-2011 ĐỀ CHÌNH THỨC KHÓA NGÀY 21/06/2010 Môn thi: TOÁN ( chuyên) Thời gian làm bài : 150 phút (không kể thời gian giao đề) Câu 1: (4 điểm) Giải hệ phương trình Giải phương trình : Câu 2: ( 3 điểm) Cho phương trình x2 – 2 ( 2m + 1) x + 4 m2 + 4 m – 3 = 0 ( x là ẩn số ) Tìm m để phương trình có hai nghiệm phân biệt thỏa Câu 3: (2 điểm ) Thu gọn biểu thức: A= Câu 4: ( 4 điểm ) Cho tam giác ABC cân tại A nội tiếp đường tròn (O).Gọi P là điểm chính giữa của cung nhỏ AC.Hai đường thẳng AP và BC cắt nhau tại M.Chừng minh rằng : a) b)MA.MP =BA.BM Câu 5 : ( 3 điểm ) Cho phương trình ( x là ẩn số và m, n là các số nguyên).Giả sử phương trình có các nghiệm đều là số nguyên. Chứng minh rằng là hợp số Cho hai số dương a,b thỏa .Tính P= Câu 6 : ( 2 điểm ) Cho tam giác OAB vuông cân tại O với OA=OB =2a.Gọi (O) là đường tròn tâm O bán kính a.Tìm điểm M thuộc (O) sao cho MA+2MB đạt giá trị nhỏ nhất Câu 7: ( 2 điểm) Cho a , b là các số dương thỏa .Chứng minh HẾT SỜ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ HỒ CHÍ MINH KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG CHUYÊN NĂM HỌC 2010-2011 KHÓA NGÀY 21/06/2010 Môn thi: TOÁN ( chuyên) Đáp án Câu Hướng dẫn chấm Điểm Câu 1 ( 4 đ) Câu:1: ( 4 điểm Giải hệ phương trình 0,5 x4 đ Giải phương trình : Đặt , pt trở thành: t2 + t - 12 = 0 t=3 hay t=-4 t =3 => t= -4 => ( vô nghiệm) Vậy pt có hai nghiệm là x =- 1 , x =3/2 0,5 đ 0,5 đ 0,5 đ 0,5 đ Câu 2 (3 đ) Câu 2 : (3 điểm ) Cho phương trình x2 – 2 ( 2m + 1) x + 4 m2 + 4 m – 3 = 0 ( x là ẩn số ) (*) Tìm m để phương trình có hai nghiệm phân biệt thỏa r’=, với mọi 1 Vậy (*) luôn có 2 nghiệm phân biệt với mọi m 0,5 đ =2m-1 ; =2m+3 0.5 đ 0,5 đ 1,5 đ Câu 3 Câu 3 : ( 2 điểm) Thu gọn biểu thức: A= ( 2 đ) Câu 4 ( 4 đ) Xét M = Ta có M > 0 và , suy ra M = A=-(-1)=1 1 đ 1 đ Câu 4 : ( 4 điểm) Cho tam giác ABC cân tại A nội tiếp đường tròn (O).Gọi P là điểm chính giữa của cung nhỏ AC.Hai đường thẳng AP và BC cắt nhau tại M.Chừng minh rằng : a) b)MA.MP =BA.BM a) ( s đ s đ) =( s đ s đ)= s đ = 2 đ b) 1 đ êMAC êMBP (g-g) 1 đ Câu 5 ( 3 đ) Câu 5: ( 3 điểm) a)Cho phương trình ( x là ẩn số và m, n là các số nguyên).Giả sử phương trình có các nghiệm đều là số nguyên. Chứng minh rằng là hợp số Gọi là 2 nghiệm của phương trình , 0,5 đ = = 0,5 đ là các số nguyên lớn hơn 1 nên là hợp số 0,5 đ b)Cho hai số dương a,b thỏa .Tính P= Ta có a=b=1 1 đ P==2 0,5 đ Câu 6 ( 2 đ) Câu 6: ( 2 điểm) Cho tam giác OAB vuông cân tại O với OA=OB =2a.Gọi (O) là đường tròn tâm O bán kính a.Tìm điểm M thuộc (O) sao cho MA+2MB đạt giá trị nhỏ nhất Đường thẳng OA cắt (O) tại C và D, với C là trung điểm của OA.Gọi E là trung điểm của OC *Trường hợp M không trùng với C vá D Hai tam giác OEM và OMA đồng dạng ( do ) 1 đ * Trường hợp M trùng với C : MA=CA=2.EC=2.EM * Trường hợp M trùng với D: MA=DA=2.ED=2.EM Vậy ta luôn có MA=2.EM 0,5 đ MA+2.MB=2(EM+MB) 2.EB = hằng số Dấu “=” xảy ra khi M là giao điểm của đoạn BE với đường tròn (O) Vậy MA +2.MB nhỏ nhất khi M là giao điểm của đoạn BE với đường tròn (O) 0,5 đ Câu 7 ( 2 đ) Câu 7 : ( 2 điểm) Cho a , b là các số dương thỏa .Chứng minh 0,5 đ Ta có: ( đúng) a+2b ( đúng) 0,5 đ Từ (1) và (2) suy ra ( do ) 1 đ
Tài liệu đính kèm: