A. Mục tiêu
HS nắm được ba vị trí tương đối của hai đường tròn, tính chất của hai đường tròn tiếp xúc nhau (tiếp điểm nằm trên đường nối tâm), tính chất của hai đường tròn cắt nhau (hai giao điểm đối xứng nhau qua đường nối tâm).
Biết vận dụng tính chất hai đường tròn cắt nhau, tiếp xúc nhau vào các bài tập về tính toán và chứng minh.
Rèn luyện tính chính xác trong phát biểu, vẽ hình và tính toán.
B. Chuẩn bị của GV và HS
GV : – Một đường tròn bằng dây thép để minh hoạ các vị trí tương đối của nó với đường tròn được vẽ sẵn trên bảng.
– Thước thẳng com pa, phấn màu, ê ke.
HS : – Ôn tập định lí sự xác định đường tròn. Tính chất đối xứng của đường tròn.
– Thước kẻ, com pa .
Tiết 31 Vị trí tương đối của hai đường tròn Ngày soạn: 05/12/2009 A. Mục tiêu HS nắm được ba vị trí tương đối của hai đường tròn, tính chất của hai đường tròn tiếp xúc nhau (tiếp điểm nằm trên đường nối tâm), tính chất của hai đường tròn cắt nhau (hai giao điểm đối xứng nhau qua đường nối tâm). Biết vận dụng tính chất hai đường tròn cắt nhau, tiếp xúc nhau vào các bài tập về tính toán và chứng minh. Rèn luyện tính chính xác trong phát biểu, vẽ hình và tính toán. B. Chuẩn bị của GV và HS GV : – Một đường tròn bằng dây thép để minh hoạ các vị trí tương đối của nó với đường tròn được vẽ sẵn trên bảng. – Thước thẳng com pa, phấn màu, ê ke. HS : – Ôn tập định lí sự xác định đường tròn. Tính chất đối xứng của đường tròn. – Thước kẻ, com pa . C. Tiến trình dạy – học: Hoạt động của GV Hoạt động của HS Hoạt động 1 kiểm tra – chữa bài tập (8 phút) Chữa bài tập 56 tr 135 SBT. (Đề bài và hình vẽ trên bảng phụ) GV nhận xét, cho điểm hai HS kiểm tra. HS: a) Chứng minh D, A, E thẳng hàng có (tính chất hai tiếp tuyến cắt nhau). Mà = 900 ị = 1800 ịD, A, E thẳng hàng. b) Chứng minh DE tiếp xúc với đường tròn đường kính BC. Có MA = MB = MC = ( tính chất tam giác vuông). ị A ẻ đường tròn (M ; ). Hình thang DBCE có AM là đường trung bình (vì AD = AE, MB = MC) ị MA // DB ịMA ^ DE. Vậy DE là tiếp tuyến của đường tròn đường kính BC Hoạt động 2 Ba vị trí tương đối của hai đường tròn (12 phút) Vì sao hai đường tròn phân biệt không thể có quá 2 điểm chung GV vẽ một đường tròn (O) cố định lên bảng, cầm đường tròn (OÂ) bằng dây thép (sơn trắng) dịch chuyển để HS thấy xuất hiện lần lượt ba vị trí tương đối của hai đường tròn. a) Hai đường tròn cắt nhau GV vẽ. GV giới thiệu : Hai đường tròn có hai điểm chung được gọi là hai đường tròn cắt nhau. Hai điểm chung đó (A, B) gọi là hai giao điểm. - Đoạn thẳng nối hai điểm đó (đoạn AB) gọi là dây chung. b) Hai đường tròn tiếp xúc nhau là hai đường tròn chỉ có một điểm chung. Tiếp xúc ngoài Điểm chung đó (A) gọi là tiếp điểm. c) Hai đường tròn không giao nhau là hai đường tròn không có điểm chung. ở ngoài nhau GV vẽ đường tròn (O) và (OÂ) có O º OÂ HS : (...) HS quan sát và nghe GV trình bày. HS ghi bài và vẽ vào vở. Tiếp xúc trong Đựng nhau Hoạt động 3 2. tính chất đường nối tâm (18 phút) GV: Vẽ hình Giới thiệu : Đường thẳng OOÂ gọi là đường nối tâm ; đoạn thẳng OOÂ gọi là đoạn nối tâm. Đường nối tâm OOÂ cắt (O) ở C và D, cắt (OÂ) ở E và F H: Tại sao đường nối tâm OOÂ lại là trục đối xứng của hình gồm cả hai đường tròn đó ? GV yêu cầu HS thực hiện . a) GV bổ sung vào hình 85 GV ghi (O) và (OÂ) cắt nhau tại A và B GV yêu cầu HS phát biểu nội dung tính chất trên. b) Quan sát hì 86, hãy dự đoán về vị trí của điểm A đối với đường nối tâm OOÂ GV ghi (O) và (OÂ) tiếp xúc nhau tại A ị O, OÂ, A, thẳng hàng. GV yêu cầu HS đọc định lí tr 119 SGK. GV yêu cầu HS làm . (Đề bài và hình 88 đưa lên bảng phụ.) a) Hãy xác định vị trí tương đối của hai đường tròn (O) và (OÂ) b) Theo hình vẽ AC, AD là gì của của đường tròn (O), (OÂ) ? – Chứng minh BC// OOÂ và ba điểm C, B, D thẳng hàng (GV gợi ý bằng cách nối AB cắt OOÂ tại I và AB ^ OOÂ) GV lưu ý HS dễ mắc sai lầm là chứng minh OOÂ là đường trung bình của “DACD” (chưa có C, B, D thẳng hàng) HS : Đường kính CD là trục đối xứng của (O), đường kính EF là trục đối xứng của đường tròn (OÂ) nên đường nối tâm OOÂ là trục đối xứng của hình gồm cả hai đường tròn đó ; HS: (...) HS ghi vào vở. HS: (...) HS ghi vào vở Hai HS đọc định lí SGK. Một HS đọc to HS quan sát hình vẽ và suy nghĩ, tìm cách chứng. HS trả lời miệng. a) Hai đường tròn (O) và (OÂ) cắt nhau tại A và B. b) AC là đường kính của (O) AD là đường kính của (OÂ) – Xét DABC có : AO = OC = R (O) AI = IB (tính chất đường nối tâm) ị OI là đường trung bình của DABC ị OI // CB hay OOÂ // BC. Chứng minh tương tự ị BD // OOÂ ị C, B, D thẳng hàng theo tiên đề ơ clít. Hoạt động 4 Củng cố (5 phút) – Nêu các vị trí tương đối hai đường tròn và số điểm chung tương ứng. – Phát biểu định lí về tính chất đường nối tâm. – Bài tập 33 tr 119 SGK (Đề bài và hình 89 đưa lên bảng phụ). GV : Trong bài chứng minh này, ta đã sử dụng tính chất gì của đường nối tâm ? HS trả lời các câu hỏi. HS nêu chứng minh DOAC có OA = OC = R (O) ị DOAC cân ị Chứng minh tương tự có DOÂAD cân ị Mà (Đối đỉnh) ị ị OC // OÂD vì có hai góc so le trong bằng nhau . Sử dụng tính chất : Khi hai đường tròn tiếp xúc nhau tại A thì A nằm trên đường nối tâm. Hướng dẫn về nhà (2 phút) – Nắm vững ba vị trí tương đối của hai đường tròn, tính chất đường nối tâm. – Bài tập về nhà số 34 tr 119 SGK . số 64, 65, 66, 67 tr 137, 138 SBT – Đọc trước Đ8 SGK. Tìm trong thực tế những đồ vật có hình dạng, kết cấu liên quan đến những vị trí tương đối của hai đường tròn. Ôn tập bất đẳng thức tam giác. Tiết 32 ôn tập học kì I môn hình học Ngày soạn: 06/12/2009 A. Mục tiêu - Ôn tập cho HS công thức định nghĩa các tỉ số lượng giác của một góc nhọn và một số tính chất của các tỉ số lượng giác. - Ôn tập cho HS các hệ thức lượng trong tam giác vuông, và kĩ năng tính đoạn thẳng, góc trong tam giác. - Ôn tập, hệ thống hoá các kiến thức đã học về đường tròn ở chương II. B. Chuẩn bị của GV và HS GV : – Bảng phụ ghi câu hỏi, bài tập, bảng hệ thống hoá kiến thức. – Thước thẳng, com pa, ê ke, thước đo độ, phấn màu, máy tính bỏ túi. HS : – Ôn tập lí thuyết theo bảng tóm tắt các kiến thức cần nhớ chương I và chương II hình học trong SGK. Làm các bài tập GV yêu cầu. – Thước kẻ, com pa, êke, thước đo độ, máy tính bỏ túi. C. Tiến trình dạy – học: Hoạt động của GV Hoạt động của HS Hoạt động 1 Ôn tập về tỉ số lượng giác của góc nhọn. (10 phút) GV nêu câu hỏi. – Hãy nêu công thức định nghĩa các tỉ số lượng giác của góc nhọn a. Bài 1. (Khoanh tròn chữ cái đứng trước kết quả đúng). Cho tam giác ABC có = 900, = 300, kẻ đường cao AH a) sinB bằng M. ; N. ; P. ; Q. b) tg300 bằng. M. ; N. ; P. ; Q. 1 c) cosC bằng. M. ; N. ; P. ; Q. d) cotgBAH bằng. M. ; N. ; P. ; Q. . Bài 2 : Trong các hệ thức sau, hệ thức nào đúng ? hệ thức nào sai ? (với góc a nhọn). a) sin2a = 1 – cos2a b) tga = c) cosa = sin(1800 – a) d) cotga = e) tga < 1 f) cotga = tg(900 – a) HS: (...) Kết quả. a) sinB = b) tg300 = c) cosC = d) CotgBAH = HS trả lời miệng: (...) Hoạt động 2 Ôn tập các hệ thức trong tam giác vuông. (13phút) GV : Cho tam giác vuông ABC đường cao AH (như hình vẽ) - Hãy viết các hệ thức về cạnh và đường cao trong tam giác. GV : Cho tam giác vuông DEF ( = 900). - Nêu các cách tính cạnh DF mà em biết (theo các cạnh còn lại và các góc nhọn của tam giác). Bài 3. (Đề bài đưa lên bảng phụ ). Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D, E lần lượt là hình chiếu của H trên AB và AC. a) Tính độ dài AB, AC. b) Tính độ dài DE, số đo HS tự viết vào vở. HS trả lời miệng. DF = EF sinE. DF = EF cosF DF = DE tgE DF = DE cotgF Một HS đọc to đề bài Một HS lên bảng vẽ hình. HS nêu chứng minh (...) Hoạt động 3 Ôn tập lí thuyết chương II : Đường tròn. (20 phút) 1) Sự xác định đường tròn và các tính chất của đường tròn. – Định nghĩa đường tròn (O, R) – GV vẽ đường tròn. – Nêu các cách xác định đường tròn. – Chỉ rõ tâm đối xứng và trục đối xứng của đường tròn. – Nêu quan hệ độ dài giữa đường kính và dây. – Phát biểu các định lí về quan hệ vuông góc giữa đường kính và dây. – Phát biểu các định lí liên hệ giữa dây và khoảng cách từ tâm đến dây. 2) Vị trí tương đối giữa đường thẳng và đường tròn. – Giữa đường thẳng và đường tròn có những vị trí tương đối nào ? Nêu hệ thức tương ứng giữa d và R. (với d là khoảng cách từ tâm tới đường thẳng). – Thế nào là tiếp tuyến của đường tròn ? – Tiếp tuyến của đường tròn có những tính chất gì ? – Phát biểu định lí hai tiếp tuyến cắt nhau của một đường tròn. – Nêu dấu hiệu nhận biết tiếp tuyến. 3) Vị trí tương đối của hai đường tròn. GV đưa bảng sau, yêu cầu HS điền vào ô hệ thức. – Phát biểu định lí về hai đường tròn cắt nhau. 4) Đường tròn và tam giác. GV đưa bài tập lên bảng phụ. Ghép đôi một ô ở cột trái với một ô ở cột phải để được khẳng định đúng. HS trả lời câu hỏi – HS nêu ba vị trí tương đối giữa đường thẳng và đường tròn. Đường thẳng cắt đường tròn Û d < R. Đường thẳng tiếp xúc đường tròn Û d = R. Đường thẳng không giao với đường tròn Û d > R – HS nêu định nghĩa tiếp tuyến đường tròn. – Tiếp tuyến của đường tròn có tính chất vuông góc với bán kính đi qua tiếp điểm. – HS phát biểu định lí hai tiếp tuyến cắt nhau. – HS nêu hai dấu hiệu nhận biết tiếp tuyến (theo định nghĩa và theo tính chất). Một HS lên bảng điền – Nếu hai đường tròn cắt nhau thì đường nối tâm là trung trực của dây chung. HS làm bài tập Một HS nêu kết quả ghép ô. Hướng dẫn về nhà (2 phút) Ôn tập kĩ lí thuyết để có cơ sở làm tốt bài tập Bài tập về nhà số 85, 86, 87, 88 tr 141, 142 SBT. Tiết sau kiểm tra học kì I.
Tài liệu đính kèm: