Thiết kế bài dạy môn Hình học 9 - Tuần 20 - Tiết 39: Liên hệ giữa cung và dây

Thiết kế bài dạy môn Hình học 9 - Tuần 20 - Tiết 39: Liên hệ giữa cung và dây

A. Mục tiêu:

 1. Về kiến thức: Giúp học sinh:

+Hiểu được các cụm từ “cung căng dây” và “dây trương cung”

+Nắm được hai định lý về sự liên hệ giữa cung và dây.

 2. Về kỷ năng: Giúp học sinh có kỷ năng:

+Sử dụng các cụm từ “cung căng dây” và “dây trương cung”

+Chứng minh định lý 1

+Vận dụng hai định lý về sự liên hệ giữa cung và dây giải bài tập

 3. Về thái độ: Suy luận

B. Phương pháp: Đặt và giải quyết vấn đề

C. Chuẩn bị của học sinh và giáo viên:

Giáo viên Học sinh

 

doc 2 trang Người đăng minhquan88 Lượt xem 957Lượt tải 0 Download
Bạn đang xem tài liệu "Thiết kế bài dạy môn Hình học 9 - Tuần 20 - Tiết 39: Liên hệ giữa cung và dây", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày Soạn: 17/1/07 
Ngày dạy:...............
Tiết
39
§2. LIÊN HỆ GIỮA CUNG VÀ DÂY
A. Mục tiêu:
	1. Về kiến thức: Giúp học sinh:
+Hiểu được các cụm từ “cung căng dây” và “dây trương cung”
+Nắm được hai định lý về sự liên hệ giữa cung và dây.
	2. Về kỷ năng: Giúp học sinh có kỷ năng:
+Sử dụng các cụm từ “cung căng dây” và “dây trương cung”
+Chứng minh định lý 1
+Vận dụng hai định lý về sự liên hệ giữa cung và dây giải bài tập
	3. Về thái độ: Suy luận
B. Phương pháp: Đặt và giải quyết vấn đề
C. Chuẩn bị của học sinh và giáo viên:
Giáo viên
Học sinh
Hình 10, hình 11, compa, thước
Sgk, compa, đo độ
D. Tiến trình lên lớp:
	I.Ổn định lớp:( 1')
	II. Kiểm tra bài cũ:(5')
Câu hỏi hoặc bài tập
Đáp án
Khi nào ta nói hai cung bằng nhau ?
Nằm trên cùng 1 đường tròn hoặc hai đường tròn bằng nhau và có số đo bằng nhau.
	III.Bài mới: (27')
	Vấn đề: Cho đường tròn (O) và A, B là hai điểm phân biệt nằm trên (O). Hai 
điểm A, B chia đường tròn thành hai phần, mỗi phần là một cung tròn, đoạn thẳng AB được gọi là dây cung AB. Cung và dây có sự liên hệ như thế nào?
Hoạt động của giáo viên và học sinh
Nội dung
HĐ1: Giới thiệu hai cụm từ “cung căng dây” và “dây trương cung” (5’)
GV: Vẽ (O) và dây AB, giới thiệu hai cụm từ “cung căng dây” và “dây trương cung”
HS: Lắng nghe, ghi nhớ
Cung AB căng dây AB
Dây AB trương cung AB
HĐ2: Định lý 1 (15’)
GV: Yêu cầu học sinh vẽ (O) và hai cung nhỏ AB và CD bằng nhau
HS: Thực hiện
GV: Dùng thước so sánh độ dài của dây AB và CD?
HS: AB = CD
GV: Như vậy, với hai cung nhỏ trên 1 đường tròn và hai đường tròn bằng nhau: hai cung bằng nhau căng hai dây có quan hệ gì?
HS: Bằng nhau
GV: Chứng minh ?
HS: Cung AB bằng cung CD nên ÐAOB bằng ÐCOD (hai góc ở tâm chắn hai cung bằng nhau) suy ra DAOB = DCOD (c.g.c) hay AB=CD
GV: Ngược lại nếu AB = AD thì cung nhỏ AB có bằng cung nhỏ CD không ?
HS: Nếu AB = AD thì cung nhỏ AB có bằng cung nhỏ CD 
GV: Chứng minh ?
HS: AB = CD suy ra DAOB =D COD (c.c.c). Do đó: ÐAOB = ÐCOD hay cung nhỏ AB bằng cung nhỏ CD
GV: Tổng quát ta có kết luận gì về sự liên hệ giữa cung và dây?
HS: Phát biểu định lý 1 sgk/71
1.Định lý 1
Định lý 1: 
Chứng minh:
a) Giả sử 
Khi đó ÐAOB=ÐCOD, nên 
DAOB=DCOD (c.g.c). Suy ra: AB=CD
b) Giả sử AB=CD. Khi đó
DAOB=DCOD (c.c.c). Suy ra: 
HĐ3: Định lý 2 (7’)
GV: Yêu cầu học sinh phát biểu định lý 2 sgk/71
HS: Thực hiện
GV: Yêu cầu học sinh vẽ hình, ghi gt, kl
HS: Thực hiện
2.Định lý 2
Định lý 2: 
	IV. Củng cố: (10')
	Giáo viên
Học sinh
Yêu cầu học sinh thực hiện bài tâp 13 sgk/72
Gợi ý: Kẻ đường kính MN//AB
TH1: Tâm O nằm ngoài hai dây
TH2: Tâm O nằm trong hai dây
TH1: Tâm O nằm ngoài hai dây
Kẻ đường kính MN//AB, ta có:
ÐMOC=ÐOCD
ÐNOD=ÐODC
ÐOCD=ÐODC
Nên ÐMOC=ÐNOD
Suy ra: Cung MC bằng cung ND (1)
Tương tự: Cung AM bằng cung NB (2)
Suy ra: Cung AC bằng cung BD
	V. Dặn dò và hướng dẫn học ở nhà: (2')
	1. Ghi nhớ sự liên hệ giữa cung và dây
2. Thực hiện bài tập: 10, 11, 12, 14 sgk/71,72 
3. Kiểm tra xem trong trường hợp cung lớn hai định lý trên đúng hay sai ?
	Hướng dẫn: Bài 14: a) Thêm điều kiện: dây không đi qua tâm

Tài liệu đính kèm:

  • docTiet39.doc