HÀM SỐ VÀ ĐỒ THỊ
I.Tính chất của hàm số bậc nhất y = ax + b (a ≠0)
-Đồng biến khi a > 0; nghịch biến khi a <>
-Đồ thị là đường thẳng nên khi vẽ chỉ cần xác định hai điểm thuộc đồ thị.
+Trong trường hợp b = 0, đồ thị hàm số luôn đi qua gốc tọa độ.
+Trong trường hợp b ≠ 0, đồ thị hàm số luôn cắt trục tung tại điểm b.
-Đồ thị hàm số luôn tạo với trục hoành một góc , mà .
-Đồ thị hàm số đi qua điểm A(xA; yA) khi và chỉ khi yA = axA + b.
II.Điểm thuộc đường – đường đi qua điểm.
Điểm A(xA; yA) thuộc đồ thị hàm số y = f(x) yA = f(xA).
Ví dụ 1: Tìm hệ số a của hàm số: y = ax2 biết đồ thị hàm số của nó đi qua điểm A(2;4).
Giải:
Do đồ thị hàm số đi qua điểm A(2;4) nên: 4= a.22 a = 1
Ví dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trình: y = -2(x + 1). Đường thẳng (d) có đi qua A không?
Chñ ®Ò I rót gän biÓu thøc Cã chøa c¨n thøc bËc hai CĂN BẬC HAI A.KIẾN THỨC CƠ BẢN 1.Khái niệm x là căn bậc hai của số không âm a x2 = a. Kí hiệu: . 2.Điều kiện xác định của biểu thức Biểu thức xác định . 3.Hằng đẳng thức căn bậc hai 4.Các phép biến đổi căn thức +) +) +) +) +) +) +) với Chñ ®Ò II HÀM SỐ VÀ ĐỒ THỊ I..Tính chất của hàm số bậc nhất y = ax + b (a ≠0) -Đồng biến khi a > 0; nghịch biến khi a < 0. -Đồ thị là đường thẳng nên khi vẽ chỉ cần xác định hai điểm thuộc đồ thị. +Trong trường hợp b = 0, đồ thị hàm số luôn đi qua gốc tọa độ. +Trong trường hợp b ≠ 0, đồ thị hàm số luôn cắt trục tung tại điểm b. -Đồ thị hàm số luôn tạo với trục hoành một góc , mà . -Đồ thị hàm số đi qua điểm A(xA; yA) khi và chỉ khi yA = axA + b. II.Điểm thuộc đường – đường đi qua điểm. Điểm A(xA; yA) thuộc đồ thị hàm số y = f(x) ⟺ yA = f(xA). Ví dụ 1: Tìm hệ số a của hàm số: y = ax2 biết đồ thị hàm số của nó đi qua điểm A(2;4). Giải: Do đồ thị hàm số đi qua điểm A(2;4) nên: 4= a.22 ⟺ a = 1 Ví dụ 2: Trong mặt phẳng tọa độ cho A(-2;2) và đường thẳng (d) có phương trình: y = -2(x + 1). Đường thẳng (d) có đi qua A không? Giải: Ta thấy -2.(-2 + 1) = 2 nên điểm A thuộc v ào đường thẳng (d) III.Quan hệ giữa hai đường thẳng. Xét hai đường thẳng: (d1): y = a1x + b1 ; (d2): y = a2x + b2 với a1 ≠ 0; a2 ≠ 0. -Hai đường thẳng song song khi a1 = a2 và b1 ≠ b2. -Hai đường thẳng trùng nhau khi a1 = a2 và b1 = b2. -Hai đường thẳng cắt nhau khi a1 ≠ a2. +Nếu b1 = b2 thì chúng cắt nhau tại b1 trên trục tung. +Nếu a1.a2 = -1 thì chúng vuông góc với nhau. IV.Cách tìm giao điểm của hai đường y = f(x) và y = g(x). Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) (II) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = f(x) hoặc y = g(x) để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (II) là số giao điểm của hai đường trên. V.Tìm điều kiện để 3 đường thẳng đồng qui. Bước 1: Giải hệ phương trình gồm hai đường thẳng không chứa tham số để tìm (x;y). Bước 2: Thay (x;y) vừa tìm được vào phương trình còn lại để tìm ra tham số . VI.Tính chất của hàm số bậc hai y = ax2 (a ≠ 0) -Nếu a > 0 thì hàm số nghịch biến khi x 0. Nếu a 0. -Đồ thị hàm số là một Parabol luôn đi qua gốc tọa độ: +) Nếu a > 0 thì parabol có điểm thấp nhất là gốc tọa độ. +) Nếu a < 0 thì Parabol có điểm cao nhất là gốc tọa độ. -Đồ thị hàm số đi qua điểm A(xA; yA) khi và chỉ khi yA = axA2. VII.Vị trí của đường thẳng và parabol -Xét đường thẳng x = m và parabol y = ax2: +) luôn có giao điểm có tọa độ là (m; am2). -Xét đường thẳng y = m và parabol y = ax2: +) Nếu m = 0 thì có 1 giao điểm là gốc tọa độ. +) Nếu am > 0 thì có hai giao điểm có hoành độ là x = +) Nếu am < 0 thì không có giao điểm. VIII.Tìm tọa độ giao điểm của (d) và (P). Bước 1: Tìm hoành độ giao điểm là nghiệm của phương trình: cx2= ax + b (V) Bước 2: Lấy nghiệm đó thay vào 1 trong hai công thức y = ax +b hoặc y = cx2 để tìm tung độ giao điểm. Chú ý: Số nghiệm của phương trình (V) là số giao điểm của (d) và (P). IV.Tìm điều kiện để (d) và (P). a) (d) và (P) cắt nhau ⟺ phương trình (V) có hai nghiệm phân biệt. b) (d) và (P) tiếp xúc với nhau ⟺ phương trình (V) có nghiệm kép. c) (d) và (P) không giao nhau ⟺ phương trình (V) vô nghiệm . X.Viết phương trình đường thẳng y = ax + b biết. 1.Quan hệ về hệ số góc và đi qua điểm A(x0;y0) Bước 1: Dựa vào quan hệ song song hay vuông góc tìm hệ số a. Bước 2: Thay a vừa tìm được và x0;y0 vào công thức y = ax + b để tìm b. 2.Biết đồ thị hàm số đi qua điểm A(x1;y1) và B(x2;y2). Do đồ thị hàm số đi qua điểm A(x1;y1) và B(x2;y2) nên ta có hệ phương trình: ax1+b=y1ax2+ b=y2 Giải hệ phương trình tìm a,b. 3.Biết đồ thị hàm số đi qua điểm A(x0;y0) và tiếp xúc với (P): y = cx2 (c≠0). +) Do đường thẳng đi qua điểm A(x0;y0) nên có phương trình : y0 = ax0 + b (3.1) +) Do đồ thị hàm số y = ax + b tiếp xúc với (P): y = cx 2 (c≠0) nên: Pt: cx2 = ax + b có nghiệm kép ⟺ Δ=0 (3.2) +) Giải hệ gồm hai phương trình trên để tìm a,b. XI.Chứng minh đường thẳng luôn đi qua 1 điểm cố định ( giả sử tham số là m). +) Giả sử A(x0;y0) là điểm cố định mà đường thẳng luôn đi qua với mọi m, thay x0;y0 vào phương trình đường thẳng chuyển về phương trình ẩn m hệ số x0;y0 nghiệm đúng với mọi m. +) Đồng nhất hệ số của phương trình trên với 0 giải hệ tìm ra x0;y0. XII.Một số ứng dụng của đồ thị hàm số. 1.Ứng dụng vào phương trình. 2.Ứng dụng vào bài toán cực trị. Chñ ®Ò III §5.PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH (Bậc nhất) A.KIẾN THỨC CƠ BẢN 1.Phương trình bậc nhất một ẩn -Đưa về dạng ax + b = 0 (a ≠ 0) -Nghiệm duy nhất là 2.Phương trình chứa ẩn ở mẫu -Tìm ĐKXĐ của phương trình. -Quy đồng và khử mẫu. -Giải phương trình vừa tìm được. -So sánh giá trị vừa tìm được với ĐKXĐ rồi kết luận. 3.Phương trình tích Để giái phương trình tích ta chỉ cần giải các phương trình thành phần của nó. Chẳng hạn: Với phương trình A(x).B(x).C(x) = 0 4.Phương trình có chứa hệ số chữ (Giải và biện luận phương trình) Dạng phương trình này sau khi biến đổi cũng có dạng ax + b = 0. Song giá trị cụ thể của a, b ta không biết nên cần đặt điều kiện để xác định số nghiệm của phương trình. -Nếu a ≠ 0 thì phương trình có nghiệm duy nhất . -Nếu a = 0 và b = 0 thì phương trình có vô số nghiệm. -Nếu a = 0 và b ≠ 0 thì phương trình vô nghiệm. 5.Phương trình có chứa dấu giá trị tuyệt đối Cần chú ý khái niệm giá trị tuyệt đối của một biểu thức 6.Hệ phương trình bậc nhất Cách giải chủ yếu dựa vào hai phương pháp cộng đại số và thế. Chú ý phương pháp đặt ẩn phụ trong một số trường hợp xuất hiện các biểu thức giống nhau ở cả hai phương trình. 7.Bất phương trình bậc nhất Với bất phương trình bậc nhất thì việc biến đổi tương tự như với phương trình bậc nhất. Tuy nhiên cần chú ý khi nhân và cả hai vế với cùng một số âm thì phải đổi chiều bất phương trình. Chñ ®Ò IV Gi¶i bµi to¸n b»ng c¸ch lËp hÖ ph¬ng tr×nh. II, LÝ thuyÕt cÇn nhí: * Bíc 1: + LËp HPT - Chän Èn, t×m ®¬n vÞ vµ §K cho Èn. - BiÓu diÔn mèi quan hÖ cßn l¹i qua Èn vµ c¸c ®¹i lîng ®· biÕt. - LËp HPT. * Bíc 2: Gi¶i HPT. * Bíc 3: §èi chiÕu víi §K ®Ó tr¶ lêi. Chñ ®Ò V Ph¬ng tr×nh bËc hai+hÖ thøc vi-Ðt Tãm t¾t lÝ thuyÕt: PHƯƠNG TRÌNH BẬC HAI ax2 + bx + c = 0 (a ≠0) (1) *Trong trường hợp giải và biện luận, cần chú ý khi a = 0 phương trình trở thành bậc nhất một ẩn (§5). A.KIẾN THỨC CƠ BẢN 1.Các dạng và cách giải Dạng 1: c = 0 khi đó Dạng 2: b = 0 khi đó -Nếu thì . -Nếu thì phương trình vô nghiệm. Dạng 3: Tổng quát CÔNG THỨC NGHIỆM TỔNG QUÁT CÔNG THỨC NGHIỆM THU GỌN : phương trình có 2 nghiệm phân biệt : phương trình có 2 nghiệm phân biệt : phương trình có nghiệm kép : phương trình có nghiệm kép : phương trình vô nghiệm : phương trình vô nghiệm Dạng 4: Các phương trình đưa được về phương trình bậc hai Cần chú ý dạng trùng phương, phương trình vô tỉ và dạng đặt ẩn phụ, còn dạng chứa ẩn ở mẫu và dạng tích đã nói ở §5. 3.Hệ thức Viet và ứng dụng -Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có hai nghiệm x1, x2 thì: -Nếu có hai số u và v sao cho thì u, v là hai nghiệm của phương trình x2 – Sx + P = 0. -Nếu a + b + c = 0 thì phương trình có nghiệm là x1 = 1; x2 = . -Nếu a – b + c = 0 thì phương trình có nghiệm là x1 = -1; x2 = . 4.Điều kiện có nghiệm của phương trình ax2 + bx + c = 0 (a ≠0) -(1) có 2 nghiệm ; có 2 nghiệm phân biệt . -(1) có 2 nghiệm cùng dấu . -(1) có 2 nghiệm dương -(1) có 2 nghiệm âm -(1) có 2 nghiệm trái dấu ac < 0 hoặc P < 0. 5.Tìm điều kiện của tham số để 2 nghiệm của phương trình thỏa mãn điều kiện nào đó. Trong những trường hợp này cần sử dụng hệ thức Viet và phương pháp giải hệ phương trình. Chñ ®Ò VI HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN A.KIẾN THỨC CƠ BẢN 1.Định lý Pitago vuông tại A 2.Hệ thức lượng trong tam giác vuông 1) AB2 = BH.BC; AC2 = CH.BC 2) AB.AC = AH.BC 3) AH2 = BH.HC 4) Kết quả: -Với tam giác đều cạnh là a, ta có: 3.Tỉ số lượng giác của góc nhọn Đặt khi đó: Kết quả suy ra: 4) Cho nhọn, BC = a; AC = b; AB = c khi đó: Chñ ®Ò VII §6.CHỨNG MINH BẰNG NHAU – SONG SONG, VUÔNG GÓC - ĐỒNG QUY, THẲNG HÀNG A.KIẾN THỨC CƠ BẢN 1.Tam giác bằng nhau a) Khái niệm: b) Các trường hợp bằng nhau của hai tam giác: c.c.c; c.g.c; g.c.g. c) Các trường hợp bằng nhau của hai tam giác vuông: hai cạnh góc vuông; cạnh huyền và một cạnh góc vuông; cạnh huyền và một góc nhọn. d) Hệ quả: Hai tam giác bằng nhau thì các đường cao; các đường phân giác; các đường trung tuyến tương ứng bằng nhau. 2.Chứng minh hai góc bằng nhau -Dùng hai tam giác bằng nhau hoặc hai tam giác đồng dạng, hai góc của tam giác cân, đều; hai góc của hình thang cân, hình bình hành, -Dùng quan hệ giữa các góc trung gian với các góc cần chứng minh. -Dùng quan hệ các góc tạo bởi các đường thẳng song song, đối đỉnh. -Dùng mối quan hệ của các góc với đường tròn.(Chứng minh 2 góc nội tiếp cùng chắn một cung hoặc hai cung bằng nhau của một đường tròn, ) 3.Chứng minh hai đoạn thẳng bằng nhau -Dùng đoạn thẳng trung gian. -Dùng hai tam giác bằng nhau. -Ứng dụng tính chất đặc biệt của tam giác cân, tam giác đều, trung tuyến ứng với cạnh huyền của tam giác vuông, hình thang cân, hình chữ nhật, -Sử dụng các yếu tố của đường tròn: hai dây cung của hai cung bằng nhau, hai đường kính của một đường tròn, -Dùng tính chất đường trung bình của tam giác, hình thang, 4.Chứng minh hai đường thẳng, hai đoạn thẳng song song -Dùng mối quan hệ giữa các góc: So le bằng nhau, đồng vị bằng nhau, trong cùng phía bù nhau, -Dùng mối quan hệ cùng song song, vuông góc với đường thẳng thứ ba. -Áp dụng định lý đảo của định lý Talet. -Áp dụng tính chất của các tứ giác đặc biệt, đường trung bình của tam giác. -Dùng tính chất hai dây chắn giữa hai cung bằng nhau của một đường tròn. 5.Chứng minh hai đường thẳng vuông góc -Chứng minh chúng song song với hai đường vuông góc khác. -Dùng tính chất: đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại. -Dùng tính chất của đường cao và cạnh đối diện trong một tam giác. -Đường kính đi qua trung điểm của dây. -Phân giác của hai góc kề bù nhau. 6.Chứng minh ba điểm thẳng hàng -Dùng tiên đề Ơclit: Nếu AB//d; BC//d thì A, B, C thẳng hàng. -Áp dụng tính chất các điểm đặc biệt trong tam giác: trọng tâm, trực tâm, tâm đường tròn ngoại tiếp, -Chứng minh 2 tia tạo bởi ba điểm tạo thành góc bẹt: Nếu góc ABC bằng 1800 thì A, B, C thẳng hàng. -Áp dụng tính chất: Hai góc bằng nhau có hai cạnh nằm trên một đường thẳng và hai cạnh kia nằm trên hai nửa mặt phẳng với bờ là đường thẳng trên. -Chứng minh AC là đường kính của đường tròn tâm B. 7.Chứng minh các đường thẳng đồng quy -Áp dụng tính chất các đường đồng quy trong tam giác. -Chứng minh các đường thẳng cùng đi qua một điểm: Ta chỉ ra hai đường thẳng cắt nhau tại một điểm và chứng minh đường thẳng còn lại đi qua điểm đó. -Dùng định lý đảo của định lý Talet *********************************************** Chñ ®Ò VIII §8.CHỨNG MINH HAI TAM GIÁC ĐỒNG DẠNG HỆ THỨC HÌNH HỌC A.KIẾN THỨC CƠ BẢN 1.Tam giác đồng dạng -Khái niệm: -Các trường hợp đồng dạng của hai tam giác: c – c – c; c – g – c; g – g. -Các trường hợp đồng dạng của hai tam giác vuông: góc nhọn; hai cạnh góc vuông; cạnh huyền - cạnh góc vuông *Tính chất: Hai tam giác đồng dạng thì tỉ số hai đường cao, hai đường phân giác, hai đường trung tuyến tương ứng, hai chu vi bằng tỉ số đồng dạng; tỉ số hai diện tích bằng bình phương tỉ số đồng dạng. 2.Phương pháp chứng minh hệ thức hình học -Dùng định lí Talet, tính chất đường phân giác, tam giác đồng dạng, các hệ thức lượng trong tam giác vuông, Giả sử cần chứng minh MA.MB = MC.MD -Chứng minh hai tam giác MAC và MDB đồng dạng hoặc hai tam giác MAD và MCB. -Trong trường hợp 5 điểm đó cùng nằm trên một đường thẳng thì cần chứng minh các tích trên cùng bằng tích thứ ba. Nếu cần chứng minh MT2 = MA.MB thì chứng minh hai tam giác MTA và MBT đồng dạng hoặc so sánh với tích thứ ba. Ngoài ra cần chú ý đến việc sử dụng các hệ thức trong tam giác vuông; phương tích của một điểm với đường tròn. *************************************************** Chñ ®Ò IX. CHỨNG MINH TỨ GIÁC NỘI TIẾP A.KIẾN THỨC CƠ BẢN Phương pháp chứng minh -Chứng minh bốn đỉnh của tứ giác cùng cách đều một điểm. -Chứng minh tứ giác có hai góc đối diện bù nhau. -Chứng minh hai đỉnh cùng nhìn đoạn thẳng tạo bởi hai điểm còn lại hai góc bằng nhau. -Chứng minh tổng của góc ngoài tại một đỉnh với góc trong đối diện bù nhau. -Chứng minh tứ giác đó là hình thang cân; hình chữ nhật; hình vuông; -Nếu MA.MB = MC.MD hoặc NA.ND = NC.NB thì tứ giác ABCD nột tiếp. (Trong đó ) -Nếu PA.PC = PB.PD thì tứ giác ABCD nội tiếp. (Trong đó ) Nếu cần chứng minh cho nhiều điểm cùng thuộc một đường tròn ta có thể chứng minh lần lượt 4 điểm một lúc. Song cần chú ý tính chất “Qua 3 điểm không thẳng hàng xác định duy nhất một đường tròn”
Tài liệu đính kèm: