Giáo án Hình học 9 - Tuần 25 - Năm học 2019-2020

doc 9 trang Người đăng Hàn Na Ngày đăng 21/11/2025 Lượt xem 22Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Hình học 9 - Tuần 25 - Năm học 2019-2020", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Tuần: 25 Ngày soạn:../../2020 
 Tiết: 47 Ngày dạy: ..../../2020 
 LUYỆN TẬP
 I. MỤC TIÊU:
 1. Kiến thức: Hiểu quỹ tích cung chứa góc,biết vận dụng mệnh đề thuận, đảo 
 của quỹ tích này để giải toán.
 2. Kỹ năng: Rèn HS kĩ năng dựng cung chứa góc và biết áp dụng cung chứa 
 góc vào bài toán dựng hình và toán quỹ tích.Biết trình bày bài giải một bài toán quỹ 
 tích gồm phần thuận, phần đảo và kết luận.
 3.Thái độ: Giáo dục HS khả năng suy đoán, tính chính xác
 4. Năng lực: 
 - Năng lực chung: năng lực giao tiếp, năng lực hợp tác, chủ động sáng tạo
 - Năng lực chuyên biệt: HS được rèn năng lực tính toán, năng lực sử dụng 
 ngôn ngữ toán học, năng lực vận dụng
 II. CHUẨN BỊ:
 1. Chuẩn bị của giáo viên: Bảng phụ, thước thẳng, compa, êke và hệ thống bài 
 tập.
 2. Chuẩn bị của học sinh: Bảng nhóm, thước, compa.
 III. CÁC BƯỚC LÊN LỚP:
 1. Ổn định tình hình lớp: Điểm danh học sinh trong lớp (1 phút)
 2. Kiểm tra bài cũ: (5 phút)
 Câu hỏi kiểm tra Đáp án Điểm
 - Phát biểu quỹ tích cung chứa - Phát biểu đúng quỹ tích cung chứa 6
 góc ? góc như SGK
 - Nếu A· MB 90 thì quỹ tích của - Nếu A· MB 90 thì quỹ tích của điểm 4
 điểm M là gì? M là đường tròn đường kính AB.
 3. Bài mới: 
 * Hoạt động 1. Khởi động (3 phút)
 a. Mục đích: Giúp học sinh nắm kiến thức về góc nội tiếp
 b. Nội dung: Các góc nội tiếp cùng chắn một cung thì bằng nhau. Các góc bằng 
 nhau cùng chứa một cạnh thì như thế nào?
 c. Kết luận của giáo viên: kiến thức về góc nội tiếp
 * Hoạt động 2. Luyện tập (30 phút)
 Mục tiêu: rèn luyện cho học sinh giải quyết tốt các bài toán về cung chứa góc 
HOẠT ĐỘNG CỦA THẦY HOẠT ĐỘNG CỦA TRÒ NỘI DUNG
Bài 2 (Bài 45 trang 86 - Đọc đề bài, suy nghĩ Bài 2 (Bài 45 trang 86 
SGK) SGK) D C
- Treo bảng phụ nêu đề bài - Điểm C, O, D di động. O
và hình -
 A B
- Hình thoi ABCD có cạnh - Trong hình thoi 2 coá ñònh
AB cố định, vậy những đường chéo vuông góc, 
 O1
điểm nào di động? suy ra AOˆB 900 , hay O 
 C
- Điểm O di động, nhưng luôn nhìn AB cố định D1 1
 1 luôn có quan hệ với đoạn dưới góc 900. Vậy:Quỹ tích điểm O là 
thẳng AB cố định như thế đường tròn đường kính AB 
nào? O không trùng với A và B
- Vậy quỹ tích của điểm O - Quỹ tích điểm O là 
là gì? đường tròn đường kính 
 AB.
- Điểm O có thể trùng với - Điểm O không thể trùng 
A, B không? Vì sao? với A, B vì nếu O trùng 
- Vậy quỹ tích điểm O là với A hoặc B thì hình 
đường tròn đường kính thoi ABCD không tồn tại.
AB, trừ hai điểm A, B.
- Treo bảng phụ nêu đề bài - Vẽ hình vào vở Bài 1: (Baøi 44 tr 86 SGK) .
44 SGK, vẽ hình
- Điểm I nhìn đọan thẳng - Điểm I nhìn đọan thẳng 
cố định nào? BC cố định 
 I
- Nêu cách tính B· IC =? - Vài HS nêu cách tính 
 B· IC 
 ã B· IC 180 µ µ ˆ ˆ ˆ
 Ta c I1 I2 BIC 180 B2 C2 
 1 1
 180 Bµ Cµ 180 Bˆ Cˆ
 2 2 
 180 45 135 180 45 135
- Điểm I nhìn đoạn thẳng - Ta kết luận được : Quỹ Điểm I nhìn đoạn thẳng BC 
BC cố định dưới góc 1350 tích điểm I là cung chứa cố định dưới góc 1350 
không đổi.Vậy ta kết luận góc 1350 dựng trên đoạn không đổi. Vậy quỹ tích 
được điều gì? thẳng BC điểm I là cung chứa góc 
- Gọi HS lên bảng trình - Cả lớp hoàn thành bài 1350 dựng trên đoạn thẳng 
bày làm vào vở BC (chỉ một cung nằm bên 
- Neâu nhaän xeùt veà baøi - Nhaän xeùt, bổ sung baøi trong của tam giác.)
làm cuûa baïn? laøm cuûa baïn
- Nhaän xeùt, goùp yù vaø ghi 
ñieåm
Bài 2 (Bài 51 tr 87 SGK) Bài 2 (Baøi 51 tr 87 SGK) .
- Gọi HS đứng tại chỗ đọc 
đề bài 51 tr 87 SGK .(Đề - Đoïc vaø tìm hieåu ñeà baøi 
bài treo bảng phụ)
- Hướng dẫn HS vẽ hình - Vẽ hình vào vở theo 
và yêu cầu HS nhắc lại hướng dẫn của GV
cách xác định tâm của 
đường tròn nội tiếp, đường 
 0
tròn ngoại tiếp tam giác . Tứ giác AB’HC’ có Â= 60 
- Chứng minh ba điểm H, - Ta cần chứng minh các Bˆ ' Cˆ ' 900 B'HˆC ' 1200
I, O cùng thuộc một đường đỉnh H, I, O nhìn đoạn BHˆC B'HˆC ' 1200 (đối 
tròn ta chứng minh điều gì thẳng cố định BC dưới 1 đỉnh) .
? góc không đổi - Xét ABC có Â = 600 
 2 - Yêu cầu HS hãy tính các - Cả lớp suy nghĩ tính . Bˆ Cˆ 1200 
góc: BHˆC; BIˆC; BOˆC rồi so HS.TB lên bảng tính các Bˆ Cˆ
 IBˆC ICˆB = 600 
sánh các góc đó . Gọi HS góc BHˆC; BIˆC; BOˆC rồi so 2
lên bảng tính . sánh các góc đó. BIˆC 1800 (IBˆC ICˆB)
- Từ kết quả tính số đo các - Vậy H, I, O cùng nằm = 1200 
góc như trên ta có kết luận trên một cung chứa góc BOˆC 2.BAˆC =1200 (định lí 
gì ? 1200 dựng trên BC góc nội tiếp) 
 Vậy H,I,O cùng nằm trên 
 một cung chứa góc 1200 
 dựng trên BC .Nói cách 
 khác, năm điểm B,H,I,O,C 
 cùng thuộc một đường tròn 
 Bài 3: (Bài 50 SGK) 
Bài 3: (Bài 50 SGK) P m
- Hướng dẫn HS vẽ hình - Đọc đề, vẽ hình vào vở
theo đề bài. O
 0 I
- Chứng minh AIB không - Ta có ·AMB = 90 (góc M
đổi? nội tiếp chắn nửa đường A B
 tròn). M'
- Gợi ý : ·AMB bằng bao - Trong tam giác vuông O'
nhiêu ? BMI: I'
 m'
 MB 1 P'
 Ta có : tgI = 
- Ta có MI = 2MB, hãy MI 2
xác định ·AIB ? ·AIB = 26034’ a/Trong tam giác vuông 
 · 0 MB 1
 Vậy AIB = 26 34’ không BMI có tgI = 
 đổi. MI 2
 ·AIB = 26034’
- Yêu cầu HS thảo luận - Thảo luận nhóm theo Vậy ·AIB = 26034’ không 
nhóm câu b) Tìm tập hợp hướng dẫn của GV, trình đổi.
điểm I. bày hoàn chỉnh bài chứng AB cố định, 
- Hướng dẫn: minh vào bảng nhóm ·AIB = 26034’ không đổi, 
1) Phần thuận: vậy I nằm trên hai cung 
+ AB cố định, ·AIB = chứa góc 26034’dựng trên 
26034’ không đổi, vậy I AB.
nằm trên đường nào ? b) Ta có ·AI ' B 2634' (vì 
+ Điểm I có thể chuyển I’ nằm trên cung chứa góc 
động trên cả hai cung này 26034’).
được không ? Trong tam giác vuông BM’I 
+ Nếu M trùng với A thì I có:
ở vị trí nào ? tanI’= tan26034’ 
- Thu bảng của 2 nhóm và - Theo dõi bảng nhóm, Hay 
nhận xét, sữa chữa nhận xét, sữa chữa M ' B 1
 M ' I ' 2M ' B .
- Hướng dẫn HS chứng M ' I ' 2
minh tiếp phần đảo.
 3 2) Phần đảo: Kết luận : Vậy quỹ tích các 
- Lấy điểm I’ bất kì thuộc - Ta có ·AI 'B = 26034’ vì điểm I là hai cung PmB và 
cung PmB hoặc P’m’B. I’ nằm trên cung chứa P’m’B’ chứa góc 
Nối AI’ cắt đường tròn góc 26034’ vẽ trên AB. 26034’dựng trên đoạn thẳng 
đường kính AB tại M’. Trong tam giác vuông AB(PP’  AB tại A). 
Nối M’.Chứng minh MT’ BM’I có tanI = 
= 2M’B. tan26034’, hay
 MB' 1
 = 0,5 = MI’ 
 M'I' 2
3) Kết luận: Vậy quỹ tích =2M’B
các điểm I là gì? - Nêu kết luận: Quỹ tích 
- Nhấn mạnh bài toán quỹ các điểm I là hai cung 
tích đầy đủ gồm các phần: PmB và P’m’B’ chứa góc 
+ Phần thuận, giới hạn 26034’dựng trên đoạn 
(nếu có) thẳng AB (PP’  AB tại 
+ Phần đảo A). 
+ Kết luận quỹ tích.
- Nếu câu hỏi của bài toán 
là: Điểm M nằm trên 
đường nào thì chỉ chứng 
minh phần thuận và giới 
hạn quỹ tích (nếu có)
 4. Hướng dẫn về nhà, hoạt động nối tiếp:(1 phút)
 - Nắm chắc quỹ tích “cung chứa góc” và các bước giải bài toán quỹ tích.
 - Làm các bài tập: 47, 48, 52 SGK
 - Tìm hiểu trước bài “Tứ giác nội tiếp”
 IV. KIỂM TRA ĐÁNH GIÁ BÀI HỌC: (5 phút)
 - Yêu cầu HS nhắc lại quỹ tích cung chứa góc và các bước giải bài toán quỹ 
 tích cung chứa góc.
 - Thông qua quỹ tích cung chứa góc ta có một cách để chứng minh 4 điểm M, 
 N, A, B nằm trên một đường tròn.
 V. RÚT KINH NGHIỆM: 
 4 Tuần: 25 Ngày soạn:../../2020 
Tiết: 48 Ngày dạy: ..../../2020 
 TỨ GIÁC NỘI TIẾP 
 I. MỤC TIÊU:
 1. Kiến thức: HS nắm vững định nghĩa tứ giác nội tiếp, tính chất về góc của tứ 
giác nội tiếp; biết rằng có những tứ giác nội tiếp được và có những tứ giác không nội 
tiếp được bất kì đường tròn nào. 
 2. Kỹ năng: Sử dụng tính chất của tứ giác nội tiếp vào làm toán và thực hành.
 3. Thái độ: Rèn HS khả năng nhận xét, tư duy và lôgíc trong suy luận và 
chứng minh hình học.
 4. Năng lực: 
 - Năng lực chung: năng lực giao tiếp, năng lực hợp tác, chủ động sáng tạo
- Năng lực chuyên biệt: HS được rèn năng lực tính toán, năng lực sử dụng ngôn ngữ 
toán học, năng lực vận dụng
 II. CHUẨN BỊ:
 1. Chuẩn bị của giáo viên: Bảng phụ, thứơc thẳng, compa, êke và hệ thống bài 
tập.
 2. Chuẩn bị của học sinh: Bảng nhóm, thước, compa.
 III. CÁC BƯỚC LÊN LỚP:
 1. Ổn định tình hình lớp: Điểm danh học sinh trong lớp (1 phút)
 2. Kiểm tra bài cũ: (5 phút)
 Câu hỏi kiểm tra Đáp án Điểm
 - Cho hình vẽ:. Hãy điền vào chỗ * Dự kiến trả lời:
 1
 trống để được những khẳng định 1) s® 2) 3600 Mỗi ý 
 đúng: 2 đúng 
 1) B· AC B¼nC 3) B¼mC ; điểm A 4) B¼nC ghi
 ¼ ¼ 2.5 
 2) s® BmC s® BnC . A m
 3) Cung chứa góc dựng trên đoạn 
 thẳng BC là cung . . Vì 
 O
 B· AC nên nằm trên cung 
 B
 ¼ C
 BmC . n
 4) Cung chứa góc 180 dựng 
 trên đoạn thẳng BC là cung .. .
 3. Bài mới: 
 * Hoạt động 1. Khởi động (3 phút)
 a. Mục đích: Giúp học sinh nắm kiến thức về góc nội tiếp
 b. Nội dung: 
 Cho hình vẽ : B
 C
 O
 A
 D
 Tính sđ của B· DA và B· CD ?Suy ra tổng B· DA+ B· CD
 5 *Trả lời : Ta có B· DAlà góc nội tiếp chắn B¼CD và B· CD là góc nội tiếp chắn 
cung BAD
 1 1
 Nên B· DA sđ B»C và B· CD sđ B¼DA
 2 2
 1 1
 Vậy B· DA+ B· CD = (sđ B¼CD +sđ B»A ) .3600=1800.
 2 2
 c. Kết luận của giáo viên: hình thành cho học sinh khái niệm tứ giác nội tiếp
 * Hoạt động 2. Hoạt động tìm tòi và tiếp nhận kiến thức 
HOẠT ĐỘNG CỦA THẦY HOẠT ĐỘNG CỦA TRÒ NỘI DUNG
Kiến thức 1: Khái niệm tứ giác nội tiếp (10 phút)
Mục tiêu: Giúp học sinh nắm được khái niệm tứ giác nội tiếp
- Yêu cầu HS thực hiện ?1 - Cả lớp thực hiện ?1. Một 1. Khái niệm tứ giác nội 
SGK. HS lên bảng thực hiện tiếp
- Giới thiệu: Tứ giác - Tứ giác có 4 đỉnh nằm Định nghĩa: Một tứ giác có 
ABCD là tứ giác nội tiếp trên một đường tròn được 4 đỉnh nằm trên một 
đường tròn. Vậy em hiểu gọi là tứ giác nội tiếp đường tròn được gọi là tứ 
thế nào là tứ giác nội tiếp đường tròn. giác nộitA tiếp đường tròn
đường tròn? B
- Gọi HS đọc định nghĩa tứ - HS: Đọc định nghĩa tứ O
giác nội tiếp trong SGK giác nội tiếp trong SGK 
- Lưu ý HS tứ giác nội tiếp D C
đường tròn còn gọi tắt là 
tứ giác nội tiếp, đường 
tròn gọi là đường tròn 
ngoại tiếp tứ giác.
- Treo bảng phụ hình vẽ, - Suy nghĩ, tìm tòi , xung 
Yêu cầu HS : Hãy chỉ ra phong trả lời: 
và giải thích + Các tứ giác 
nội tiếp trong hình sau:
 A
 B
 M
 E H
 O
 C
 D
+ Có tứ giác nào trên hình + các tứ giác ABCD; 
không nội tiếp được đường ABDE; ACDE nội tiếp 
tròn (O)? đương tròn (O) vì có 4 
 đỉnh đều thuộc (O).
+ Tứ giác MADE và + Tứ giác MADE và 
AHDE có nội tiếp được AHDE không nội tiếp 
đường tròn khác hay đường tròn (O).
không? Vì sao?
 + Tứ giác MADE và 
 6 AHDE không nội tiếp bất 
 kì đường tròn nào khác, vì 
 qua 3 điểm A, D, E chỉ vẽ 
 được duy nhất đường tròn 
 (O).
- Khẳng định: Có những tứ - Ta luôn vẽ được đường 
giác nội tiếp và có những tròn đi qua 3 đỉnh của một 
tứ giác không nội tiếp tam giác, tuy nhiên đối với 
được bất kì đường tròn tứ giác thì có khi vẽ được Chú ý: Có những tứ giác 
nào. và có khi không vẽ được nội tiếp được đường tròn, 
- Gọi HS trả lời câu hỏi đường tròn đi qua 4 đỉnh nhưng cũng có những tứ 
trong phần đóng khung ở của tứ giác giác không nội tiếp được 
đầu bài ? bất kì đường tròn nào.
Kiến thức 2: Định lí về tổng số đo hai góc đối của tứ giác nội tiếp (10 phút)
Mục tiêu: giúp học sinh nắm được định lí về tổng số đo hai góc đối của tứ giác nội 
tiếp
- Yêu cầu HS tiến hành đo - HS.TB lên bảng tiến 2. Định lí: 
và tính tổng số đo hai góc hành đo 2 góc đối diện của A
đối diện của tứ giác nội tứ giác ABCD rồi tính 
 B
tiếp ABCD ở ?1 tổng của chúng. ,cả lớp 
 thực hiện và đọc kết quả. O
- Qua kết quả đo có nhận - Tổng số đo hai góc đối 
xét gì về tổng số đo hai của một tứ giác nội tiếp D C
góc đối của tứ giác nội luôn bằng 1800.
tiếp?
- Khẳng định đây là định - Vài HS nhắc lại nội dung Trong một tứ giác nội tiếp, 
lí, yêu cầu vài HS nhắc lại định lí tổng số đo hai góc đối diện 
- Vẽ hình, yêu cầu HS nêu - Nêu giả thiết và kết luận bằng 1800.
giả thiết và kết luận của của định lí.
định lí. Töù giaùc ABCD noäi
- Yêu cầu HS hoạt động - Hoạt động chứng minh GT tieáp ñöôøng troøn (O)
nhóm chứng minh định lý theo phân công KL A + C = 180
trong 5’. B + D = 180
- Nhóm 1, 3, 5 chứng minh 
µA +Cµ = 1800 Chứng minh
- Nhóm 2, 4, 6 chứng minh Ta coù ABCD noäi tieáp (O). 
Bµ + Dµ = 1800 Nên
 s® B¼CD s® B¼AD
- Gọi đại diện hai nhóm - Đại diện hai nhóm treo B· AD B· CD 
treo bảng phụ và trình bày bảng phụ và trình bày 2
- Kiểm tra , nhận xét, hoàn - Đại diện các nhóm khác 
thiện bài chứng minh và nhận xét, góp ý và hoàn Mµ s® B¼CD s® B¼AD 360
tuyên dương các nhóm có thiện bài làm của nhóm 360
 bạn Suy ra B· AD B· CD 180
kết quả tốt, động viên các 2
nhóm chưa tốt.
 7 - Chú ý: Sau khi chứng - Cả lớp theo dõi MÆt kh¸c theo ®Þnh lÝ tæng 4 gãc 
minh , ta suy ra bằng định trong cña tø gi¸c ABCD ta cã 
lí tổng 4 góc trong của tứ 
giác.
 A· BC A· DC 360 B· AD B· CD 
 360 180 180
Kiến thức 3: Định lí đảo (10 phút)
Mục tiêu: Giúp học sinh nắm được phương pháp chứng minh tứ giác nội tiếp
- Tứ giác có tổng số đo hai - Tìm hiểu mệnh đề đảo 3. Định lí đảo .
góc đối diện bằng 1800 thì của định lí về tứ giác nội 
tứ giác đó nội tiếp đường tiếp. Nếu một tứ giác có tổng số 
trịn không? đo hai góc đối diện bằng 
- Khẳng định: Tứ giác có 1800 thì tứ giác đó nội tiếp 
tổng số đo hai góc đối diện được đường tròn .
 0
bằng 180 thì tứ giác đó A
nội tiếp đường tròn.(đây là 
định lí đảo của định lí B
trên) O
- Vẽ tứ giác ABCD - Vẽ hình và nêu GT, KL D
có Bˆ Dˆ =180 và yêu cầu của định lí. C
HS nêu GT, KL của định GT: Tứ giác ABCD có: 
lí. Bµ Dµ 1800
- Gợi ý HS chứng minh: - Chứng minh theo hướng 
+ Qua 3 điểm A, B, C của dẫn KL: ABCD nội tiếp (O)
tứ giác ta vẽ đường tròn 
(O). Để tứ giác ABCD là - Ta cần chứng minh đỉnh 
tứ giác nội tiếp, chúng ta D cũng nằm trên đường Chứng minh
cần chứng minh điều gì? tròn (O). (SGK tr 88) .
+ Hai điểm A và C chia 
đường tròn thành hai cung 
ABC và cung AmC. Ta có 
cung ABC là cung chứa - Cung AmC là cung chứa 
góc B dựng trên đoạn góc 1800 - Bˆ dựng trên 
thẳng AC. Vậy cung AmC đoạn thẳng AC. 
là cung chứa góc nào dựng 
trên đoạn thẳng AC?
- Tại sao đỉnh D lại thuộc - Theo giả thiết ta có 
cung AmC? Bˆ Dˆ 1800 suy ra 
 Dˆ 1800 Bˆ , vậy điểm D 
 thuộc cung AmC .
- Kết luận gì về tứ gic - Tứ giác ABCD nội tiếp 
ABCD? vì Có 4 đỉnh nằm trên một 
 đường tròn .
 8 - Yêu cầu HS nhắc lại nội - Vài HS nhắc lại nội dung 
dung định lí thuận và đảo định lí thuận và đảo về tứ 
về tứ giác nội tiếp. giác nội tiếp.
- Định lí đảo cho ta biết - Hình thang cân, hình chữ 
thêm một dấu hiệu nhận nhật, hình vuông là các tứ 
biết tứ giác nội tiếp .- Hãy giác nội tiếp, vì có tổng 
cho biết trong các tứ giác hai góc đối bằng 1800 .
đặc biệt đã học ở lớp 8, tứ 
giác nào nội tiếp được ? Vì 
sao ?
 4. Hướng dẫn về nhà, hoạt động nối tiếp:(1 phút)
 - Nắm vững định nghĩa, tính chất về góc tứ giác nội tiếp.
 - Vận dụng các kiến thức đã học vào giải các bài tập: 55, 56 SGK.
 IV. KIỂM TRA ĐÁNH GIÁ BÀI HỌC: (5 phút)
 - Yêu cầu HS thảo luận nhóm vẽ BĐTD củng cố kiến thức toàn bài trong thời 
gian 3 phút với chủ đề “Tứ giác nội tiếp”
 - Chọn nhóm vẽ chính xác, nhanh đẹp .Yêu cầu HS cả lớp quan sát.,góp ý bổ 
sung
 - Treo bảng phụ nêu BĐTD mẫu cho HS đối chiếu và so sánh.
 V. RÚT KINH NGHIỆM: 
 Điền Hải, ngày tháng . năm 2020
 Ký duyệt:
 9

Tài liệu đính kèm:

  • docgiao_an_hinh_hoc_9_tuan_25_nam_hoc_2019_2020.doc