Thiết kế bài dạy môn Hình học 9 - Tuần 10 - Tiết 20: Sự xác định đường tròn tính chất đối xứng của đường tròn

Thiết kế bài dạy môn Hình học 9 - Tuần 10 - Tiết 20: Sự xác định đường tròn tính chất đối xứng của đường tròn

A. Mục tiêu: Giúp học sinh:

 1. Về kiến thức:

+Nắm được định nghĩa đường tròn

+Nắm được cách xác định đường tròn

+Nắm được khái niệm đường tròn ngoại tiếp tam giác và tam giác nội tiếp đường tròn.

+Nắm được tính chất đối của đường tròn

 2. Về kỷ năng:

+Vẽ đường tròn đi qua ba điểm

+Chứng minh một số điểm nằm trên đường tròn

 3. Về thái độ: Suy luận

B. Phương pháp: Đặt và giải quyết vấn đề

C. Chuẩn bị của học sinh và giáo viên:

Giáo viên Học sinh

Thước, compa Sgk, dụng cụ học tập

 

doc 3 trang Người đăng minhquan88 Lượt xem 978Lượt tải 0 Download
Bạn đang xem tài liệu "Thiết kế bài dạy môn Hình học 9 - Tuần 10 - Tiết 20: Sự xác định đường tròn tính chất đối xứng của đường tròn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày Soạn: 30/11/06
Ngày dạy:.
Tiết
20
§18. SỰ XÁC ĐỊNH ĐƯỜNG TRÒN
TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN
A. Mục tiêu: Giúp học sinh:
	1. Về kiến thức:
+Nắm được định nghĩa đường tròn
+Nắm được cách xác định đường tròn
+Nắm được khái niệm đường tròn ngoại tiếp tam giác và tam giác nội tiếp đường tròn. 
+Nắm được tính chất đối của đường tròn 
	2. Về kỷ năng:
+Vẽ đường tròn đi qua ba điểm
+Chứng minh một số điểm nằm trên đường tròn
	3. Về thái độ: Suy luận
B. Phương pháp: Đặt và giải quyết vấn đề
C. Chuẩn bị của học sinh và giáo viên:
Giáo viên
Học sinh
Thước, compa
Sgk, dụng cụ học tập
D. Tiến trình lên lớp:
	I.Ổn định lớp:( 1')
	II. Kiểm tra bài cũ:	
III.Bài mới: (39')
Giáo viên
Học sinh
Chương 1 giúp các em biết thêm một số hệ thức trong tam giác vuông. Chương 2: “Đường tròn” giúp các em tìm hiểu về đường tròn 
Lắng nghe
Hoạt động của giáo viên và học sinh
Nội dung
HĐ1: Nhắc lại về đường tròn (10’)
GV: (O; R) là hình gồm những điểm nào?
HS: (O; R) là tập hợp các điểm cách điểm O một khoảng R
GV: Bổ sung, điều chỉnh
HS: Lắng nghe, ghi nhớ
GV: Nêu vị trí tương đối của điểm M với (O; R) HS: Lắng nghe, ghi nhớ
GV: Cho (O; R), điểm M nằm trong đường tròn, điểm N nằm ngoài đường tròn, sao cho M, N, O không thẳng hàng. Hãy so sánh số đo của góc OMN và góc ONM ? HS: Do M nằm trong và N nằm ngoài nên ON > OM. Do đó số đo góc ONM lớn hơn số đo góc OMN (trong tam giác góc đối diện với cạnh lớn hơn thì lớn hơn)
GV: Bổ sung, điều chỉnh
HS: Lắng nghe, ghi nhớ
1) Đường tròn
a) Định nghĩa:
(O; R) = {M | OM = R}
b) Vị trí tương đối của 1 điểm với một đường tròn
M thuộc (O; R) nếu MO = R
M nằm trong (O; R) nếu MO < R
M nằm ngoài (O; R) nếu MO > R
HĐ2: Cách xác định đường tròn (15’)
GV: Một đường tròn xác định nếu biết tâm và bán kính của đường tròn hoặc biết một đoạn thẳng làm đường kính của đường tròn. Vấn đề là xét xem một đường tròn được xác định nếu biết bao nhiêu điểm của nó ?
HS: Lắng nghe, suy nghĩ
GV: Hãy lấy hai điểm bất kỳ A, B và vẽ một đường tròn qua hai điểm đó ?
HS: Thực hiện
GV: Thực hiện trên bảng, có bao nhiêu đường tròn như vậy ? 
HS: Có vô số đường tròn
GV: Tâm của chúng ở đâu ? HS: Gọi O là tâm của đường tròn đi qua A và B. Suy ra OA = OB. Do đó tâm của các đường tròn đi qua A và B nằm trên trung trực của AB.
GV: Như vậy, nếu biết một, hoặc hai điểm của đường tròn ta đều chưa xác định được duy nhất một đường tròn. Bây giờ xét đường tròn đi qua ba điểm của nó. Cho ba điểm A, B, C không thẳng hàng, hãy vẽ đường tròn qua ba điểm đó ?
Gợi ý: Giao ba đường trung trực của tam giác ABC có tính chất gì ?
HS: Thực hiện
GV: Qua ba điểm không thẳng hàng vẽ được bao nhiêu đường tròn ?
HS: một và chỉ một
GV: Nếu ba điểm A, B, C thẳng hàng thì có thể vẽ được đường tròn qua ba điểm A, B, C không ? HS: Phát biểu chú ý sgk/98
GV: Bổ sung điểu chỉnh
HS: Lắng nghe, ghi nhớ
GV: Đường tròn đi qua ba điểm A, B, C không thẳng hàng được gọi là đường tròn ngoại tiếp tam giác ABC và tam giác ABC nội tiếp đường tròn.
HS: Lắng nghe, ghi nhớ
2) Cách xác định đường tròn
Một đường tròn được xác định nếu biết:
a) Tâm và bán kính
b) Đoạn thẳng làm đường kính
c) Biết ba điểm của nó
HĐ3: Tâm đối xứng (7’)
GV: Cho (O; R), A là một điểm thuộc (O). Vẽ điểm A’ đối xứng với A qua O. A’ có thuộc (O) không ? Vì sao ?
HS: Do A’ đối xứng với A qua O nên OA’ = OA = R. Do đó A’ thuộc (O)
GV: Như vậy mỗi điểm đối xứng với một điểm thuộc (O) qua O nằm trên đường nào ? HS: Trên (O)
GV: Tâm O là gì của (O) ?
HS: Tâm O là tâm đối xứng của (O)
GV: Bổ sung, điều chỉnh
HS: Lắng nghe, ghi nhớ
3) Tâm đối xứng
Tâm O là tâm đối xứng của (O)
HĐ4: Trục đối xứng (7’)
GV: Cho (O; R), AB là một đường kính, M là một điểm thuộc (O). Vẽ điểm M’ đối xứng với M qua AB. M’ có thuộc (O) không ? Vì sao ?
HS: Do M’ đối xứng với M qua AB nên OM’ = OM = R. Do đó M’ thuộc (O)
GV: Như vậy mỗi điểm đối xứng với một điểm thuộc (O) qua AB nằm trên đường nào ? HS: Trên (O)
GV: Đường kính của (O) là gì của (O) ?
HS: Là trục đối xứng của (O)
GV: Bổ sung, điều chỉnh
HS: Lắng nghe, ghi nhớ
4) Trục đối xứng
Bất kì đường kính nào cũng là trục đối xứng của đường tròn.
	IV. Củng cố: (4')
Giáo viên
Học sinh
Yêu cầu học sinh thực hiện bài 1 sgk/99
Bổ sung, điều chỉnh
Gọi O là giao của hai đường chéo. Suy ra OA = OB = OC = OD (t/c của hình chữ nhật). Do đó A, B, C, D nằm trên đường tròn tâm O
	V. Dặn dò và hướng dẫn học ở nhà:(1')
	Thực hiện bài tập: 2, 3, 4 sgk/100

Tài liệu đính kèm:

  • docTiet20.doc