Tổng hợp 51 đề thi tuyển sinh lớp 10 của 51 tỉnh thành phố năm học 2012 – 2013 môn Toán

Tổng hợp 51 đề thi tuyển sinh lớp 10 của 51 tỉnh thành phố năm học 2012 – 2013 môn Toán

Bài 1: (2 điểm)

Giải các phương trình và hệ phương trình sau:

a)

b)

c)

d)

Bài 2: (1,5 điểm)

 a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ.

 b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.

Bài 3: (1,5 điểm)

 Thu gọn các biểu thức sau:

 với x > 0;

Bài 4: (1,5 điểm)

 Cho phương trình (x là ẩn số)

a) Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi m.

b) Gọi x1, x2 là các nghiệm của phương trình.

Tìm m để biểu thức M = đạt giá trị nhỏ nhất

 

doc 156 trang Người đăng honghoa45 Lượt xem 720Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Tổng hợp 51 đề thi tuyển sinh lớp 10 của 51 tỉnh thành phố năm học 2012 – 2013 môn Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TỔNG HỢP 51 ĐỀ THI TUYỂN SINH LỚP 10 CỦA 51 TỈNH THÀNH PHỐ
NĂM HỌC 2012 – 2013 
MÔN TOÁN
ĐỀ CHÍNH THỨC
SỞ GIÁO DỤC VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH LỚP 10 THPT 	TP.HCM	Năm học: 2012 – 2013
	MÔN: TOÁN
	Thời gian làm bài: 120 phút 
Bài 1: (2 điểm)
Giải các phương trình và hệ phương trình sau:
a) 	
b) 	
c) 
d) 
Bài 2: (1,5 điểm)
	a) Vẽ đồ thị (P) của hàm số và đường thẳng (D): trên cùng một hệ trục toạ độ.
	b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3: (1,5 điểm)
	Thu gọn các biểu thức sau:
 với x > 0; 
Bài 4: (1,5 điểm)
	Cho phương trình (x là ẩn số)
Chứng minh rằng phương trình luôn luôn có 2 nghiệm phân biệt với mọi m.
Gọi x1, x2 là các nghiệm của phương trình. 
Tìm m để biểu thức M = đạt giá trị nhỏ nhất
Bài 5: (3,5 điểm)
Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳng MO cắt (O) tại E và F (ME<MF). Vẽ cát tuyến MAB và tiếp tuyến MC của (O) (C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳng MO).
Chứng minh rằng MA.MB = ME.MF
Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác AHOB nội tiếp.
Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO và KF. Chứng minh rằng đường thẳng MS vuông góc với đường thẳng KC.
Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS và T là trung điểm của KS. Chứng minh ba điểm P, Q, T thẳng hàng.
BÀI GIẢI
Bài 1: (2 điểm)
Giải các phương trình và hệ phương trình sau:
a) 	 (a)
	 Vì phương trình (a) có a - b + c = 0 nên 
(a) 
b) 	 Û 
Û
Û 
c) 	 (C)
	Đặt u = x2 ³ 0, phương trình thành : u2 + u – 12 = 0 (*)
	(*) có D = 49 nên (*) Û hay (loại)
	Do đó, (C) Û x2 = 3 Û x = ±
Cách khác : (C) Û (x2 – 3)(x2 + 4) = 0 Û x2 = 3 Û x = ±
d) 	 (d)
D’ = 2 + 7 = 9 do đó (d) Û x = 
Bài 2: 
	a) Đồ thị: 
	Lưu ý: (P) đi qua O(0;0), 
(D) đi qua 
	b) PT hoành độ giao điểm của (P) và (D) là	
Û x2 + 2x – 8 = 0 
y(-4) = 4, y(2) = 1
Vậy toạ độ giao điểm của (P) và (D) là .
Bài 3:Thu gọn các biểu thức sau:
 với x > 0; 
Câu 4:
a/ Phương trình (1) có ∆’ = m2 - 4m +8 = (m - 2)2 +4 > 0 với mọi m nên phương trình (1) có 2 nghiệm phân biệt với mọi m.
b/ Do đó, theo Viet, với mọi m, ta có: S = ; P = 
 M = = 
. Khi m = 1 ta có nhỏ nhất
M 
E 
F 
K 
S 
A 
B 
T 
P 
Q 
C 
H 
O 
V 
 lớn nhất khi m = 1 nhỏ nhất khi m = 1
Vậy M đạt giá trị nhỏ nhất là - 2 khi m = 1
Câu 5
Vì ta có do hai tam giác đồng dạng MAE và MBF
Nên MA.MB = ME.MF
 (Phương tích của M đối với đường tròn tâm O)
Do hệ thức lượng trong đường tròn ta có
 MA.MB = MC2, mặt khác hệ thức lượng 
trong tam giác vuông MCO ta có 
MH.MO = MC2 MA.MB = MH.MO 
nên tứ giác AHOB nội tiếp trong đường tròn.
Xét tứ giác MKSC nội tiếp trong đường 
tròn đường kính MS (có hai góc K và C vuông).
Vậy ta có : MK2 = ME.MF = MC2 nên MK = MC.
 Do đó MF chính là đường trung trực của KC
 nên MS vuông góc với KC tại V.
Do hệ thức lượng trong đường tròn ta có MA.MB = MV.MS của đường tròn tâm Q.
Tương tự với đường tròn tâm P ta cũng có MV.MS = ME.MF nên PQ vuông góc với MS và là đường trung trực của VS (đường nối hai tâm của hai đường tròn). Nên PQ cũng đi qua trung điểm của KS (do định lí trung bình của tam giác SKV). Vậy 3 điểm T, Q, P thẳng hàng.
SỞ GIÁO DỤC VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH LỚP 10 THPT 	TP.ĐÀ NẴNG 	Năm học: 2012 – 2013
ĐỀ CHÍNH THỨC
	MÔN: TOÁN
	Thời gian làm bài: 120 phút 
Bài 1: (2,0 điểm)
Giải phương trình:	(x + 1)(x + 2) = 0
Giải hệ phương trình: 
Bài 2: (1,0 điểm)
y
	Rút gọn biểu thức 
y=ax2
Bài 3: (1,5 điểm)
	Biết rằng đường cong trong hình vẽ bên là một parabol y = ax2.
Tìm hệ số a.
2
Gọi M và N là các giao điểm của đường thẳng
y = x + 4 với parabol. Tìm tọa độ của các điểm M và N.
x
2
1
0
Bài 4: (2,0 điểm)
	Cho phương trình x2 – 2x – 3m2 = 0, với m là tham số.
Giải phương trình khi m = 1.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa điều kiện .
Bài 5: (3,5 điểm)
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B Î (O), C Î (O’). Đường thẳng BO cắt (O) tại điểm thứ hai là D.
Chứ`ng minh rằng tứ giác CO’OB là một hình thang vuông.
Chứng minh rằng ba điểm A, C, D thẳng hàng.
Từ D kẻ tiếp tuyến DE với đường tròn (O’) (E là tiếp điểm). Chứng minh rằng DB = DE.
BÀI GIẢI
Bài 1:
1) 	(x + 1)(x + 2) = 0 Û x + 1 = 0 hay x + 2 = 0 Û x = -1 hay x = -2
2) 	 Û Û 
Bài 2: = = 
 = = 4
Bài 3: 
1) 	Theo đồ thị ta có y(2) = 2 Þ 2 = a.22 Û a = ½ 
2)	Phương trình hoành độ giao điểm của y = và đường thẳng y = x + 4 là :
	x + 4 = Û x2 – 2x – 8 = 0 Û x = -2 hay x = 4
	y(-2) = 2 ; y(4) = 8. Vậy tọa độ các điểm M và N là (-2 ; 2) và (4 ; 8).
Bài 4:	
1)	Khi m = 1, phương trình thành : x2 – 2x – 3 = 0 Û x = -1 hay x = 3 (có dạng a–b + c = 0)
2)	Với x1, x2 ¹ 0, ta có : Û Û 3(x1 + x2)(x1 – x2) = 8x1x2
	Ta có : a.c = -3m2 £ 0 nên D ³ 0, "m
	Khi D ³ 0 ta có : x1 + x2 = và x1.x2 = £ 0
	Điều kiện để phương trình có 2 nghiệm ¹ 0 mà m ¹ 0 Þ D > 0 và x1.x2 < 0 Þ x1 < x2
	Với a = 1 Þ x1 = và x2 = Þ x1 – x2 = 
	Do đó, ycbt Û và m ¹ 0 
Û (hiển nhiên m = 0 không là nghiệm)
Û 4m4 – 3m2 – 1 = 0 Û m2 = 1 hay m2 = -1/4 (loại) Û m = ±1
B
C
E
D
A
O
O’
Bài 5:
1)	Theo tính chất của tiếp tuyến ta có OB, O’C vuông góc với BC Þ tứ giác CO’OB là hình thang vuông.
2)	Ta có góc ABC = góc BDC Þ góc ABC + góc BCA = 900 Þ góc BAC = 900
	Mặt khác, ta có góc BAD = 900 (nội tiếp nửa đường tròn)
	Vậy ta có góc DAC = 1800 nên 3 điểm D, A, C thẳng hàng.
3)	Theo hệ thức lượng trong tam giác vuông DBC ta có DB2 = DA.DC
	Mặt khác, theo hệ thức lượng trong đường tròn (chứng minh bằng tam giác đồng dạng) ta có DE2 = DA.DC Þ DB = DE.
SỞ GD&ĐT
VĨNH PHÚC
ĐỀ CHÍNH THỨC
KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013
ĐỀ THI MÔN : TOÁN
Thời gian làm bài 120 phút (không kể thời gian giao đề)
Ngày thi: 21 tháng 6 năm 2012
Câu 1 (2,0 điểm). Cho biểu thức :P=
Tìm điều kiện xác định của biểu thức P.
Rút gọn P
Câu 2 (2,0 điểm). Cho hệ phương trình :
Giải hệ phương trình với a=1
Tìm a để hệ phương trình có nghiệm duy nhất.
Câu 3 (2,0 điểm). Một hình chữ nhật có chiều rộng bằng một nửa chiều dài. Biết rằng nếu giảm mỗi chiều đi 2m thì diện tích hình chữ nhật đã cho giảm đi một nửa. Tính chiều dài hình chữ nhật đã cho.
Câu 4 (3,0 điểm). Cho đường tròn (O;R) (điểm O cố định, giá trị R không đổi) và điểm M nằm bên ngoài (O). Kẻ hai tiếp tuyến MB, MC (B,C là các tiếp điểm ) của (O) và tia Mx nằm giữa hai tia MO và MC. Qua B kẻ đường thẳng song song với Mx, đường thẳng này cắt (O) tại điểm thứ hai là A. Vẽ đường kính BB’ của (O). Qua O kẻ đường thẳng vuông góc với BB’,đường thẳng này cắt MC và B’C lần lượt tại K và E. Chứng minh rằng:
4 điểm M,B,O,C cùng nằm trên một đường tròn.
Đoạn thẳng ME = R.
Khi điểm M di động mà OM = 2R thì điểm K di động trên một đường tròn cố định, chỉ rõ tâm và bán kính của đường tròn đó.
Câu 5 (1,0 điểm). Cho a,b,c là các số dương thỏa mãn a+ b + c =4. Chứng minh rằng :
SỞ GD&ĐT VĨNH PHÚC
KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2012-2013
ĐÁP ÁN ĐỀ THI MÔN : TOÁN
Ngày thi: 21 tháng 6 năm 2012
Câu
Đáp án, gợi ý
Điểm
C1.1
(0,75 điểm)
Biểu thức P xác định 
0,5
0,25
C1.2 (1,25 điểm)
P=
0,25
0,5
0,5
C2.1 (1,0 điểm)
Với a = 1, hệ phương trình có dạng: 
 Vậy với a = 1, hệ phương trình có nghiệm duy nhất là: 
0,25
0,25
0,25
0,25
C2.2 (1,0 điểm)
-Nếu a = 0, hệ có dạng: => có nghiệm duy nhất
-Nếu a , hệ có nghiệm duy nhất khi và chỉ khi: 
 (luôn đúng, vì với mọi a)
Do đó, với a , hệ luôn có nghiệm duy nhất.
 Vậy hệ phương trình đã cho có nghiệm duy nhất với mọi a.
0,25
0,25
0,25
0,25
C3 (2,0 điểm)
 Gọi chiều dài của hình chữ nhật đã cho là x (m), với x > 4.
Vì chiều rộng bằng nửa chiều dài nên chiều rộng là: (m)
=> diện tích hình chữ nhật đã cho là: (m2)
Nếu giảm mỗi chiều đi 2 m thì chiều dài, chiều rộng của hình chữ nhật lần lượt là: (m)
khi đó, diện tích hình chữ nhật giảm đi một nửa nên ta có phương trình: 
.=> (thoả mãn x>4); 
 (loại vì không thoả mãn x>4)
Vậy chiều dài của hình chữ nhật đã cho là (m).
0,25
0,25
0,25
0,25
0,25
0,5
0,25
C4.1 (1,0 điểm)
B
1) Chứng minh M, B, O, C cùng thuộc 1 đường tròn
Ta có: (vì MB là tiếp tuyến)
1
(vì MC là tiếp tuyến)O
2
1
K
M
=> MBO + MCO =
= 900 + 900 = 1800
1
E
B’
=> Tứ giác MBOC nội tiếp
C
(vì có tổng 2 góc đối =1800)
=>4 điểm M, B, O, C cùng thuộc 1 đường tròn
0,25
0,25
0,25
0,25
C4.2 (1,0 điểm)
2) Chứng minh ME = R:
Ta có MB//EO (vì cùng vuông góc với BB’) 
=> O1 = M1 (so le trong)
Mà M1 = M2 (tính chất 2 tiếp tuyến cắt nhau) => M2 = O1 (1)
C/m được MO//EB’ (vì cùng vuông góc với BC)
=> O1 = E1 (so le trong) (2)
Từ (1), (2) => M2 = E1 => MOCE nội tiếp
=> MEO = MCO = 900 
=> MEO = MBO = BOE = 900 => MBOE là hình chữ nhật
=> ME = OB = R (điều phải chứng minh)
0,25
0,25
0,25
0,25
C4.3 (1,0 điểm)
3) Chứng minh khi OM=2R thì K di động trên 1 đường tròn cố định:
Chứng minh được Tam giác MBC đều => BMC = 600
=> BOC = 1200 
=> KOC = 600 - O1 = 600 - M1 = 600 – 300 = 300
Trong tam giác KOC vuông tại C, ta có: 
Mà O cố định, R không đổi => K di động trên đường tròn tâm O, bán kính = (điều phải chứng minh)
0,25
0,25
0,25
0,25
C5 (1,0 điểm)
Do đó, 
0,25
0,25
0,25
0,25
Chú ý: -Câu 4, thừa giả thiết “tia Mx” và “điểm A” à gây rối.
	 -Mỗi câu đều có các cách làm khác 
 câu 5 
Cach 2: Đặt x = => x, y , z > 0 và x4 + y4 + z4 = 4.
BĐT cần CM tương đương: x3 + y3 + z3 > 
hay (x3 + y3 + z3 ) > 4 = x4 + y4 + z4
ó x3(-x) + y3(-y)+ z3(-z) > 0 (*).
Ta xét 2 trường hợp:
	- Nếu trong 3 sô x, y, z tồn tại it nhât một sô , giả sử x thì x3 .
Khi đo: x3 + y3 + z3 > ( do y, z > 0).
	- Nếu cả 3 sô x, y, z đều nhỏ thì BĐT(*) luôn đung.
Vậy x3 + y3 + z3 > được CM.
Cach 3: Có thể dùng BĐT thức Côsi kết hợp phương pháp làm trội và đánh giá cũng cho kết quả ànhưng hơi dài, phức tạp).
SỞ GD VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH VÀO 10 THPT NĂM HỌC 2012-2013
 ĐĂKLĂK	MÔN THI : TOÁN
ĐỀ CHÍNH THỨC
Thời gian làm bài: 120 phút,(không kể giao đề)
Ngày thi: 22/06/2012
Câu 1. (2,5đ)
Giải phương trình:
a) 2x2 – 7x + 3 = 0.	b) 9x4 + 5x2 – 4 = 0.
Tìm hàm số y = ax + b, biết đồ thị hàm số của nó đi qua 2 điểm A(2;5) ; B(-2;-3).
Câu 2. (1,5đ)
Hai ô tô đi từ A đến B dài 200km. Biết vận tốc xe thứ nhất nhanh hơn vận tốc xe thứ hai là 10km/h nên xe thứ nhất đến B sớm hơn xe thứ hai 1 giờ. Tính vận tốc mỗi xe.
Rút gọn biểu thức: với x ≥ 0.
Câu 3. (1,5 đ)
Cho phương trình: x2 – 2(m+2)x + m2 + 4m +3 = 0.
Chứng minh rằng : Phương trình trên luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.
Tìm gi ... .
+ => Tứ giác DMCH nội tiếp.
+ => Tâm O của đường tròn ngoại tiếp tứ giác DMCH là trung điểm MH.
0,25
0,25
0,25
0,25
c)
(1,0)
+ Chứng minh được hai tam giác ADM và ACH đồng dạng (g.g) 
+
+ Ta lại có: MC2 = ME.MH và MH=MK nên MC2 = ME.MK (2)
+ Mặt khác: MC = MA (gt) (3)
 Từ (1), (2), (3) => => AH.AD = 2ME.MK
0,25
0,25
0,25
0,25
d)
(0,75)
+ ABC vuông tại A, góc C = 300 nên AC = a.
+ (cùng phụ góc CMH) => MH = 2MC
 Mà AC = 2MC nên: MH = AC = a.
+ Độ dài đường tròn ngoại tiếp tứ giác DMCH là:
	
0,25
0,25
0,25
d
(0,75)
+ Tam giác ABC vuông tại A nên: AC = AB.cotC = a.
+
 => 
Diện tích hình tròn (O):
+ 
0,25
0,25
0,25
ĐỀ CHÍNH THỨC
SỞ GIÁO DỤC – ĐÀO TẠO	KỲ THI TUYỂN SINH VÀO LỚP 10 THPT 
	VĨNH LONG	NĂM HỌC 2012 – 2013
ĐỀ CHÍNH THỨC
	Môn thi : TOÁN
	Thời gian làm bài : 120 phút, không kể thời gian giao đề
Câu 1: (2,5 điểm) Giải phương trình và hệ phương trình:
	a) 2x – 1 = 3
	b) 
	c) 	
Câu 2: (2,5 điểm)
	a) Vẽ đường thẳng (d): y = 2x – 1
	b) Chứng minh rằng đường thẳng (d) tiếp xúc với parabol (P): y = x2
	c) Tìm a và b để đường thẳng (d’): y = ax + b song song với đường thẳng (d) và đi qua điểm M(0; 2).
Câu 3: (1,0 điểm)
	Tìm tham, số thực m để phương trình x2 – 2mx + m – 1 = 0 có một nghiệm bằng 0. Tính nghiệm còn lại.
Câu 4: (1,0 điểm) 
Rút gọn biểu thức:, với 
Câu 5: (2 điểm)
	Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O. Gọi AH và BK lần lượt là các đường cao của tam giác ABC.
	a) Chứng minh tứ giác AKHB nội tiếp đường tròn. Xác định tâm của đường tròn này
	b) Gọi (d) là tiếp tuyến với đường tròn (O) tại C. Chứng minh rằng và .
Câu 6: (1 điểm)
	Tính diện tích xung quanh và thể tích của một hình nón có đường kính đường tròn đáy d = 24 (cm) và độ dài đường sinh (cm).
SỞ GIÁO DỤC VÀ ĐÀO TẠO	KỲ THI TUYỂN SINH VÀO LƠP 10 THPT
 TỈNH BÀ RỊA-VŨNG TÀU	 Năm học 2012 – 2013 
ĐỀ CHÍNH THỨC
 	MÔN THI: TOÁN
	 Ngày thi: 05 tháng 7 năm 2012
	(Thời gian làm bài: 120 phút, không kể thời gian giao đề)
Bài 1: (3,0 điểm)
Rút gọn biểu thức: 	A = 
Giải phương trình: 	x2 + 8x – 9 = 0 
Giải hệ phương trình: 	
Bài 2: (1,5 điểm) Cho parabol (P): y = x2 và đường thẳng (d): y = x + 2 
Vẽ (P) và (d) trên cùng một mặt phẳng tọa độ
Tìm tọa độ giao điểm của (P) và (d) bằng phép tính. 
Bài 3: (1,5 điểm) 
Hai đội công nhân cùng làm một công việc. Nếu hai đội làm chung thì hoàn thành sau 12 ngày. Nếu mỗi đội làm riêng thì dội một sẽ hoàn thành công việc nhanh hơn đội hai là 7 ngày. Hỏi nếu làm riêng thì mỗi đội phải làm trong bao nhiêu ngày để hoàn thành công việc đó?
Bài 4: (3,5 điểm) 
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax với đường tròn (O). Trên Ax lấy điểm M sao cho AM > AB, MB cắt (O) tại N (N khác B). Qua trung điểm P của đoạn AM, dựng đường thẳng vuông góc với AM cắt BM tại Q.
Chứng minh tứ giác APQN nội tiếp đường tròn.
Gọi C là điểm trên cung lớn NB của đường tròn (O) (C khác N và C khác B). 
Chứng minh: 
Chứng minh PN là tiếp tuyến của đường tròn (O).
Giả sử đường tròn nội tiếp có độ dài đường kính bằng độ dài đoạn OA. 
Tính giá trị của 
Bài 5: (0,5 điểm) 
Cho phương trình (m là tham số). Khi phương trình trên có nghiệm , tìm giá trị nhỏ nhất của biểu thức: 
Đáp án bài hình 
a) Tứ giác APQN có 
b) Ta có PA = PM và PQ ^ AM Þ QM = QB ÞOQ // AM Þ OQ ^ AB 
 (cùng phụ với ) 
 (cùng chắn ) 
c) Cách 1: Þ tứ giác AONQ nội tiếp. 
Kết hợp câu a suy ra 5 điểm A, O, N, Q, P cùng nằm trên một đường tròn 
 Þ NP là tiếp tuyến của (O)
Cách 2: (do DPAN cân tại P)
 (do DONB cân tại O)
Nhưng (cùng phụ với ) 
Þ 
Mà Þ NP là tiếp tuyến của (O)
d) Gọi I là giao điểm của PO và (O), suy ra I là tâm đường tròn nội tiếp tam giác APN
 (R là bán kính đường tròn (O)) đều 
 (g-g) 
SỞ GIÁO DỤC VÀ ĐÀO TẠO	ĐỀ THI TUYỂN SINH LỚP 10 THPT
 TỈNH HẬU GIANG	 NĂM HỌC 2012 – 2013
ĐỀ CHÍNH THỨC
 MÔN: TOÁN
 Thời gian làm bài: 120 phút (không kể thời gian giao đề)
 Đề thi có 01 trang
Bài 1: (0,5 điểm) Rút gọn biểu thức: 
Bài 2: (1,5 điểm) Không sử dụng máy tính cầm tay, hãy giải phương trình và hệ phương trình sau:
a) 	b) 
Bài 3: (2,0 điểm)
Vẽ đồ thị (P) của hàm số: y = -2x2 
Tìm toạ độ các giao điểm của (P) và đường thẳng (D): y = x – 1 bằng phép tính.
Bài 4: (2,0 điểm) Cho phương trình (m là tham số)
Chứng minh phương trình luôn có 2 nghiệm phân biệt.
Gọi hai nghiệm của phương trình là . Xác định m để giá trị của biểu thức nhỏ nhất
Bài 5: (4,0 điểm) Cho đường tròn (O; R) và một điểm S ở bên ngoài đường tròn vẽ hai tiếp tuyến SA, SB và đường thẳng a đi qua S cắt đường tròn (O; R) tại M, N với M nằm giữa S và N (đường thẳng a không đi qua tâm O).
Chứng minh SOAB
Gọi I là trung điểm của MN và H là giao điểm của SO và AB; hai đường thẳng OI và AB cắt nhau tại E. Chứng minh: OI.OE = R2
Chứng minh tứ giác SHIE nội tiếp đường tròn
Cho SO = 2R và MN = R. Tính diện tích tam giác ESM theo R
SỞ GIÁO DỤC VÀ ĐÀO TẠO
KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
QUẢNG NAM
Năm học: 2012-2013
ĐỀ CHÍNH THỨC
Khóa thi: Ngày 4 tháng 7 năm 2012
Môn: TOÁN (Chuyên Toán)
 Thời gian làm bài: 150 phút (không kể thời gian giao đề)
Câu 1: (1,5 điểm)
	a) Rút gọn biểu thức: A = (với a ≥ 0 và a ≠ 4). 
	b) Cho . Tính giá trị của biểu thức: .
Câu 2: (2,0 điểm)
	a) Giải phương trình: .
	b) Giải hệ phương trình: 	
Câu 3: (1,5 điểm)
	Cho parabol (P): y = − x2 và đường thẳng (d): y = (3 − m)x + 2 − 2m (m là tham số).
	a) Chứng minh rằng với m ≠ −1 thì (d) luôn cắt (P) tại 2 điểm phân biệt A, B.
	b) Gọi yA, yB lần lượt là tung độ các điểm A, B. Tìm m để |yA − yB| = 2.
Câu 4: (4,0 điểm)
	Cho hình chữ nhật ABCD có AB = 4 cm, AD = 2 cm. Đường thẳng vuông góc với AC tại C cắt các đường thẳng AB và AD lần lượt tại E và F.
	a) Chứng minh tứ giác EBDF nội tiếp trong đường tròn.
	b) Gọi I là giao điểm của các đường thẳng BD và EF. Tính độ dài đoạn thẳng ID.
	c) M là điểm thay đổi trên cạnh AB (M khác A, M khác B), đường thẳng CM cắt đường thẳng AD tại N. Gọi S1 là diện tích tam giác CME, S2 là diện tích tam giác AMN. Xác định vị trí điểm M để . 
Câu 5: (1,0 điểm)
	Cho a, b là hai số thực không âm thỏa: a + b ≤ 2. 
	Chứng minh: .
--------------- Hết ---------------
Họ và tên thí sinh: ......................................................... Số báo danh: ...................................
SỞ GIÁO DỤC VÀ ĐÀO TẠO
KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
QUẢNG NAM
Năm học: 2012-2013
ĐỀ CHÍNH THỨC
Khóa thi: Ngày 4 tháng 7 năm 2012
Môn: TOÁN (Chuyên Toán)
 Thời gian làm bài: 150 phút ( không kể thời gian giao đề)
HƯỚNG DẪN CHẤM THI
(Bản hướng dẫn này gồm 03 trang)
Câu
Nội dung
Điểm
Câu 1
(1,5 điểm)
a) (0,75) A = (a ≥ 0 và a ≠4) 
A = 
 = 
 = −1
0,25
0,25
0,25
b) (0,75) Cho . Tính: 
=
Þ 
Þ 
0,25
0,25
0,25
Câu 2
(2,0 điểm)
a) (1,0) Giải phương trình: (1)
 Bình phương 2 vế của (1) ta được:
 Þ 
 Þ 
 Þ Þ x = 1 hoặc x =−2
 Thử lại, x = −2 là nghiệm .
0,25
0,25
0,25
 0,25
b) (1,0) Giải hệ phương trình: (I) 
Nếu (x;y) là nghiệm của (2) thì y ≠ 0. 
Do đó: (2) Û (3)
Thay (3) vào (1) và biến đổi, ta được: 
	 4y3 + 7y2 + 4y + 1 = 0
	Û (y + 1)(4y2 + 3y + 1) = 0 (thí sinh có thể bỏ qua bước này)
	Û y = – 1 
	y = – 1 Þ x = 2
Vậy hệ có một nghiệm: (x ; y) = (2 ; −1).
0,25
0,25
0,25
0,25
Câu
Nội dung
Điểm
Câu 3
(1,5 điểm)
a) (0,75) (P): y = − x2 , (d): y = (3 − m)x + 2 − 2m.
Chứng minh rằng với m ≠ −1 thì (d) luôn cắt (P) tại 2 điểm phân biệt A, B
Phương trình hoành độ giao điểm của (P) và (d):
 − x2 = (3 − m)x + 2 − 2m.
 Û x2 + (3 − m)x + 2 − 2m = 0 (1)
 D = (3−m)2 − 4(2 − 2m) = m2 + 2m + 1
Viết được: D = (m + 1)2 > 0, với m ≠ − 1 và kết luận đúng.
0,25
0,25
0,25
b) (0,75) Tìm m để |yA − yB| = 2 .
 Giải PT (1) được hai nghiệm: x1 = − 2 và x2 = m − 1
 Tính được: y1 = − 4, y2 = −(m − 1)2
	 |yA − yB| = |y1 − y2| = |m2−2m−3|
 |yA − yB| = 2 Û m2 − 2m − 3 = 2 hoặc m2 −2m − 3 = −2
 	 Û m = hoặc m = 
0,25
0,25
0,25
Câu 4
(4,0 điểm)
a) (1,0) Chứng minh tứ giác EBDF nội tiếp trong đường tròn.
Ta có:
( cùng phụ với )
 Þ 
 Þ tứ giác EBDF nội tiếp 
0,25
0,25
0,25
0,25
b) (1,5) Tính ID 
Tam giác AEC vuông tại C và BC ^ AE nên: BE.BA = BC2 
 	Þ 
	BE//CD Þ 
	Þ 
	Þ và tính được: BD = 
 Þ (cm)
0,25
0,25
0,25
0,25
0,25
0,25
Câu
Nội dung
Điểm
Câu 4
(tt)
c) (1,5 điểm) Xác định vị trí điểm M để S1 = S2 
 Đặt AM = x, 0 < x < 4
 Þ MB = 4− x , ME = 5 − x
Ta có: 
 , 
 S1 = S2 Û 5− x = . Û x2 + 18x − 40 = 0 
Û x = 2 (vì 0 < x < 4) 
Vậy M là trung điểm AB .
0,25
0,25
0,25
0,25
0,25
0,25
Câu 5
(1,0 điểm)
Cho a, b ≥ 0 và a + b ≤ 2. Chứng minh : 
Bất đẳng thức cần chứng minh tương đương với: 
Ta có: = (1) (bđt Côsi)
 (bđt Cô si)
 Þ (2)
 Từ (1) và (2) suy ra: 
Dấu “=” xảy ra chỉ khi : a + 1 = b + và a + b = 2 Û a = và b = 
0,25
0,25
0,25
0,25
SỞ GIÁO DỤC VÀ ĐÀO TẠO
 BẾN TRE
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH 10 
TRUNG HỌC PHỔ THÔNG CHUYÊN BẾN TRE NĂM HỌC 2012 – 2013
MÔN TOÁN (chung)
Thời gian 120 phút (không kể phát đề)
Câu 1 (2,0 điểm). Không dùng máy tính bỏ túi, hãy rút gọn các biểu thức sau:
a) A = 
b) B = , (với x > 0)
Câu 2 (2,5 điểm). Giải phương trình và hệ phương trình sau: 
a) 
b) 
Câu 3 (2,5 điểm).
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1; x2 với mọi m. Với giá trị nào của m thì hai nghiệm x1; x2 thỏa mãn 
b) Cho x, y, z là ba số thực dương thỏa: . Chứng minh rằng: 
Đẳng thức xảy ra khi nào?
Câu 4 (3,0 điểm). Cho nửa đường tròn tâm O đường kính AB. Từ A, B vẽ các tiếp tuyến Ax, By về phía có chứa nửa đường tròn (O). Lấy điểm M thuộc đoạn thẳng OA; điểm N thuộc nửa đường tròn (O). Đường tròn (O’) ngoại tiếp tam giác AMN cắt Ax tại C; đường thẳng CN cắt By tại D.
Chứng minh tứ giác BMND nội tiếp.
 Chứng minh DM là tiếp tuyến của đường tròn (O’).
3/ Gọi I là giao điểm của AN và CM; K là giao điểm của BN và DM. Chứng minh IK song song AB.
SỞ GIÁO DỤC VÀ ĐÀO TẠO
 BẾN TRE
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH 10 
TRUNG HỌC PHỔ THÔNG CHUYÊN BẾN TRE NĂM HỌC 2012 – 2013
MÔN TOÁN CHUYÊN
Thời gian 120 phút (không kể phát đề)
Bài 1: (3 điểm)
Cho biểu thức 
 với x 0
1/ Rút gọn biểu thức A.
2/ Đặt . Tìm x để biểu thức B đạt giá trị nhỏ nhất 
Bài 2:
Giải các phương trình và hệ phương trình sau
1/ 
2/ 
3/ 
Bài 3:
1/ Xác định tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 . Với giá trị nào của m thì hai nghiệm x1; x2 thỏa điều kiện 
2/ Cho ba số thực dương a, b, c. Chứng minh rằng 
Bài 4:
Cho tam giác ABC nhọn, vẽ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên hai cạnh AB, AC. Đường thẳng qua A vuông góc với EF cắt cạnh BC tại D.
1/ Chứng minh đường thẳng AD đi qua tâm đường tròn ngoại tiếp của tam giác ABC.
2/ Gọi I, K lần lượt là hình chiếu của D lên hai cạnh AB, AC. Chứng minh tam giác DIK đồng dạng với tam giác HEF.
3/ Chứng minh 

Tài liệu đính kèm:

  • docTuyen tap de thi vao lop 10 cac tinh nam 2012 codap an.doc