Bài 4: (3,5điểm)
Từ điểm A ở ngoài đường tròn (0;2cm). Kẻ hai tiếp tuyến AB, AC và cát tuyến AMN với đường tròn đó (M nằm giữa A và N), cho góc BAC có số đo bằng 600.
a) Chứng minh tứ giác ABOC nội tiếp đường tròn. Xác định tâm và bán kính của đường tròn ngoại tiếp tứ giác ABOC.
b) Chứng minh:
c) Tính diện tích phần hình giới hạn bởi các đoạn AB, AC và cung nhỏ BC nói trên.
MA TRẬN ĐỀ KIỂM TRA Cấp độ Các chủ đề Nhận Biết Thông Hiểu Vận Dụng Tổng cộng Vận dụng thấp Vận dụng cao 1.Hệ phương trình bậc nhất hai ẩn Giải hệ phương trình Số câu 1 Số điểm 1 – Tỉ lệ 10% Số câu 1 Số điểm 1 Số câu 1 1điểm =10% 2.Hàm số và phương trình bậc nhất hai ẩn Vẽ đồ thị hàm số Giải phương trình trùng phương Tìm tọa độ giao điểm của (d ) và (P). Vận dụng định lý Vi-ét Giải bài toán bằng cách lập phương trình Số câu 5 Số điểm 5,5– Tỉ lệ55% Số câu 1 Số điểm 1 Số câu 1 Số điểm 1 Số câu 2 Số điểm 2 Số câu 1 Số điểm 1,5 Số câu 5 5,5 điểm= 55% 3.Góc với đường tròn Chứng minh tứ giác nội tiếp được đường tròn Chứng minh hệ thức hình học Tính diện tích hình phẳng Số câu3 Số điểm 3,5– Tỉ lệ35% Số câu 1 Số điểm 1,5 Số câu 1 Số điểm 1 Số câu 1 Số điểm 1 Số câu 3 3,5 điểm= 35% Tổng số câu 9 Tổng số điểm 10 Tỉ lệ 100% Số câu 2 Số điểm 2,5 25% Số câu 2 Số điểm 2 20% Số câu 5 Số điểm 5,5 55% Số câu 9 Số điểm 10 ĐỀ KIỂM TRA Bài 1: ( 3 điểm) ( Không dùng máy tính cầm tay ) Giải hệ phương trình: Giải phương trình: Cho phương trình bậc hai: (m là tham số ) Tìm m để phương trình có hai nghiệm thỏa mãn Bài 2: (1,5 điểm) Một tam giác vuông có chu vi bằng 30m, cạnh huyền bằng 13m. Tính mỗi cạnh góc vuông. Bài 3: ( 2 điểm) Trong mặt phẳng tọa độ cho prabol( P): Vẽ đồ thị ( P ) Bằng phương pháp đại số tìm tọa độ giao điểm A và B của (P) và đường thẳng (d): Bài 4: (3,5điểm) Từ điểm A ở ngoài đường tròn (0;2cm). Kẻ hai tiếp tuyến AB, AC và cát tuyến AMN với đường tròn đó (M nằm giữa A và N), cho góc BAC có số đo bằng 600. Chứng minh tứ giác ABOC nội tiếp đường tròn. Xác định tâm và bán kính của đường tròn ngoại tiếp tứ giác ABOC. Chứng minh: Tính diện tích phần hình giới hạn bởi các đoạn AB, AC và cung nhỏ BC nói trên. ĐÁP ÁN VÀ THANG ĐIỂM BÀI ĐÁP ÁN ĐIỂM 1.1 Giải hệ phương trình: 1đ 0,25đ 0,25đ 0,25đ Vậy hệ phương trình có một nghiệm duy nhất 0,25đ 1.2 Giải phương trình: 1đ Đặt phương trình trở thành 0,25đ Giải và (nhận) (nhận) 0,25đ 0,25đ Vậy phương trình có 4 nghiệm: 0,25đ 1.3 Tìm m để phương trình có hai nghiệm thỏa mãn 1đ Phương trình có nghiệm khi D’ 0,25đ Viết đúng hệ thức Vi-et 0,25đ 0,25đ vậy m = 8 0,25đ 2 Tìm hai cạnh góc vuông 1,5đ Gọi là cạnh góc vuông thứ nhất. Điều kiện 0,25đ Cạnh vuông thứ hai: 0,25đ Sử dụng định lý Pitago viết phương trình 0,25đ 0,25đ Lập 0,25đ (nhận) (nhận) Vậy độ dài hai cạnh góc vuông là: 12m và 5m 0,25đ 3 a. Vẽ đồ thị (P): 1đ Bảng giá trị -2 -1 0 1 2 -8 -2 0 -2 -8 0,5đ Vẽ đúng đồ thị 0,5đ b.Tọa độ giao điểm của (P) và (d) 1đ Phương trình hoành độ giao điểm của (P) và (d) là: 0,25đ Giải ra nghiệm 0,25đ Tìm được tọa độ giao điểm A(-1;-2) và B() 0,5đ 4 Vẽ hình: . Tứ giác ABOC có (tính chất của tiếp tuyến ) 0,5đ Tứ giác ABOC nội tiếp đường tròn 0,5đ (tính chất hai tiếp tuyến giao nhau ) và là tam giác đều (hai góc nội tiếp cùng chắn cung) 0,25đ Vậy tứ giác ABOC nội tiếp trung đường tròn tâm là trung điểm của OA bán kính bằng 2 cm. 0,25đ Xét hai tam giác . (góc tạo bởi tia tiếp tuyến và góc nội tiếp cùng chắn cung ) 0,25đ chung 0,25đ Suy ra DABM đồng dạng DANB(g.g) 0,25đ 0,25đ Tứ giác ABOC nội tiếp 0,25đ Squạt OBMC 0,25đ 0,25đ Scần tìm = SOBAC – Squạt 0,25đ Học sinh giải cách khác đúng vẫn đạt điểm tối đa
Tài liệu đính kèm: